Nothing Special   »   [go: up one dir, main page]

Skip to main content

Ensemble Classification for Constraint Solver Configuration

  • Conference paper
Principles and Practice of Constraint Programming – CP 2010 (CP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6308))

Abstract

The automatic tuning of the parameters of algorithms and automatic selection of algorithms has received a lot of attention recently. One possible approach is the use of machine learning techniques to learn classifiers which, given the characteristics of a particular problem, make a decision as to which algorithm or what parameters to use. Little research has been done into which machine learning algorithms are suitable and the impact of picking the “right” over the “wrong” technique. This paper investigates the differences in performance of several techniques on different data sets. It furthermore provides evidence that by using a meta-technique which combines several machine learning algorithms, we can avoid the problem of having to pick the “best” one and still achieve good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 142–157. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Bain, S., Thornton, J., Sattar, A.: Evolving Variable-Ordering heuristics for constrained optimisation. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 732–736. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Mach. Learn. 36(1-2), 105–139 (1999)

    Article  Google Scholar 

  4. Chen, F., Jin, R.: Active algorithm selection. In: AAAI, pp. 534–539 (2007)

    Google Scholar 

  5. Dechter, R.: Constraint Processing. Elsevier Science, Amsterdam (2003)

    Google Scholar 

  6. Dietterich, T.G.: Ensemble methods in machine learning. In: First International Workshop on Multiple Classifier Systems, pp. 1–15 (2000)

    Google Scholar 

  7. Epstein, S., Freuder, E., Wallace, R., Morozov, A., Samuels, B.: The adaptive constraint engine. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 525–542. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Gent, I., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In: ECAI, pp. 98–102 (2006)

    Google Scholar 

  9. Gent, I.P., Miguel, I., Moore, N.C.A.: Lazy explanations for constraint propagators. In: Carro, M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937, pp. 217–233. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Gent, I., Miguel, I., Nightingale, P.: Generalised arc consistency for the alldifferent constraint: An empirical survey. Artif. Intell. 172(18), 1973–2000 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA data mining software: An update. SIGKDD Explorations 11(1) (2009)

    Google Scholar 

  12. KhudaBukhsh, A., Xu, L., Hoos, H., Leyton-Brown, K.: SATenstein: Automatically building local search SAT solvers from components. In: IJCAI, pp. 517–524 (2009)

    Google Scholar 

  13. Kohavi, R.: A study of Cross-Validation and bootstrap for accuracy estimation and model selection. In: IJCAI, p. 1137–1143 (1995)

    Google Scholar 

  14. Lavesson, N., Davidsson, P.: Quantifying the impact of learning algorithm parameter tuning. In: AAAI, pp. 395–400 (2006)

    Google Scholar 

  15. McKay, B.: Practical graph isomorphism. In: Numerical Mathematics and Computing, pp. 45–87 (1981)

    Google Scholar 

  16. Minton, S.: Automatically configuring constraint satisfaction programs: A case study. Constraints 1(1/2), 7–43 (1996)

    Article  MathSciNet  Google Scholar 

  17. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-based reasoning in an algorithm portfolio for constraint solving. In: Irish Conf. on AI (2008)

    Google Scholar 

  18. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  19. Rice, J.: The algorithm selection problem. Adv. Computers 15, 65–118 (1976)

    Google Scholar 

  20. Weerawarana, S., Houstis, E.N., Rice, J.R., Joshi, A., Houstis, C.E.: PYTHIA: a knowledge-based system to select scientific algorithms. ACM Trans. Math. Softw. 22(4), 447–468 (1996)

    Article  MATH  Google Scholar 

  21. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco (2005)

    Google Scholar 

  22. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based algorithm selection for SAT. JAIR 32, 565–606 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kotthoff, L., Miguel, I., Nightingale, P. (2010). Ensemble Classification for Constraint Solver Configuration. In: Cohen, D. (eds) Principles and Practice of Constraint Programming – CP 2010. CP 2010. Lecture Notes in Computer Science, vol 6308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15396-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15396-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15395-2

  • Online ISBN: 978-3-642-15396-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics