Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

We take another step in the study of the testability of small-width OBDDs, initiated by Ron and Tsur (Random’09). That is, we consider algorithms that, given oracle access to a function f:{0,1}n →{0,1}, need to determine whether f can be implemented by some restricted class of OBDDs or is far from any such function.

Ron and Tsur showed that testing whether a function f:{0,1}n →{0,1} is implementable by a width-2 OBDD has query complexity Θ(logn). Thus, testing width-2 OBDD functions is significantly easier than learning such functions (which requires Ω(n) queries). We show that such exponential gaps do not hold for several related classes. Specifically:

  1. 1

    Testing whether f:{0,1}n →{0,1} is implementable by a width-4 OBDD requires \(\Omega(\sqrt{n})\) queries.

  2. 1

    Testing whether f:GF(3)n→GF(3) is a linear function with 0-1 coefficients requires \(\Omega(\sqrt{n})\) queries. Note that this class of functions is a subset of the class of all linear functions over GF(3), and that each such linear function can be implemented by a width-3 OBDD.

  3. 1

    There exists a subclass \({\mathcal C}\) of the linear functions from GF(2)n to GF(2) such that testing membership in \({\mathcal C}\) has query complexity Θ(n). Note that each linear function over GF(2) can be implemented by a width-2 OBDD.

Recall that each of these classes has a proper learning algorithm of query complexity O(n).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple Constructions of Almost k-wise Independent Random Variables. Journal of Random Structures and Algorithms 3(3), 289–304 (1992)

    Article  MATH  Google Scholar 

  2. Alon, N., Krivelevich, M., Newman, I., Szegedy, M.: Regular languages are testable with a constant number of queries. In: SICOMP, pp. 1842–1862 (2001)

    Google Scholar 

  3. Bellare, M., Coppersmith, D., Håstad, J., Kiwi, M., Sudan, M.: Linearity testing in characteristic two. In: 36th FOCS, pp. 432–441 (1995)

    Google Scholar 

  4. Blais, E.: Testing juntas almost optimally. In: 41st STOC, pp. 151–158 (2009)

    Google Scholar 

  5. Blum, M., Luby, M., Rubinfeld, R.: Self-Testing/Correcting with Applications to Numerical Problems. JCSS 47(3), 549–595 (1993)

    MATH  MathSciNet  Google Scholar 

  6. Diakonikolas, I., Lee, H.K., Matulef, K., Onak, K., Rubinfeld, R., Servedio, R.A., Wan, A.: Testing for concise representations. In: 48th FOCS, pp. 549–557 (2007)

    Google Scholar 

  7. Diakonikolas, I., Lee, H.K., Matulef, K., Servedio, R.A., Wan, A.: Efficient testing of sparse GF(2) polynomials. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 502–514. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Even, G.: Construction of Small Probabilistic Spaces for Deterministic Simulation. M.Sc. Thesis, Computer Science Dept., Technion – Israel Institute of Technology (August 1991) (in Hebrew, abstract in English)

    Google Scholar 

  9. Fischer, E., Kindler, G., Ron, D., Safra, S., Samorodnitsky, S.: Testing Juntas. JCSS 68(4), 753–787 (2004)

    MATH  MathSciNet  Google Scholar 

  10. Goldreich, O.: On Testing Computability by Small Width OBDDs. ECCC, TR10-061 (2010)

    Google Scholar 

  11. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. JACM 1996, 653–750 (1998)

    Article  MathSciNet  Google Scholar 

  12. Goldreich, O., Krivelevich, M., Newman, I., Rozenberg, E.: Hierarchy Theorems for Property Testing. ECCC, TR08-097 (2008)

    Google Scholar 

  13. Goldreich, O., Ron, D.: On Proximity Oblivious Testing. ECCC, TR08-041 (2008); Extended abstract in the proceedings of the 41st STOC (2009)

    Google Scholar 

  14. Lachish, O., Newman, I., Shapira, A.: Space Complexity vs. Query Complexity. Computational Complexity 17, 70–93 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Naor, J., Naor, M.: Small-bias Probability Spaces: Efficient Constructions and Applications. SICOMP 22, 838–856 (1993)

    MATH  MathSciNet  Google Scholar 

  16. Newman, I.: Testing membership in languages that have small width branching programs. SIAM Journal on Computing 31(5), 1557–1570 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Parnas, M., Ron, D., Samorodnitsky, A.: Testing basic boolean formulae. SIDMA 16(1), 20–46 (2002)

    MATH  MathSciNet  Google Scholar 

  18. Ron, D.: Property Testing: A Learning Theory Perspective. Foundations and Trends in Machine Learning 1(3), 307–402 (2008)

    Article  Google Scholar 

  19. Ron, D.: Algorithmic and Analysis Techniques in Property Testing. In: Foundations and Trends in TCS (to appear)

    Google Scholar 

  20. Ron, D., Tsur, G.: Testing Computability by Width Two OBDDs. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) RANDOM 2009. LNCS, vol. 5687, pp. 686–699. Springer, Heidelberg (2009)

    Google Scholar 

  21. Ron, D., Tsur, G.: Testing Computability by Width Two OBDDs where the Variable Order is Unknown. In: 7th CIAC (to appear)

    Google Scholar 

  22. Rubinfeld, R.: On the Robustness of Functional Equations. SIAM Journal on Computing 28(6), 1972–1997 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications to program testing. SIAM Journal on Computing 25(2), 252–271 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldreich, O. (2010). On Testing Computability by Small Width OBDDs. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2010 2010. Lecture Notes in Computer Science, vol 6302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15369-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15369-3_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15368-6

  • Online ISBN: 978-3-642-15369-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics