Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

We study the concept of propagation connectivity on random 3-uniform hypergraphs. This concept is defined for investigating the performance of a simple algorithm for solving instances of certain constraint satisfaction problems. We derive upper and lower bounds for edge probability of random 3-uniform hypergraphs such that the propagation connectivity holds. Based on our analysis, we also show the way to implement the simple algorithm so that it runs in linear time on average.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Behrisch, M., Coja-Oghlan, A., Kang, M.: Local limit theorems for the giant component of random hypergraphs. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 341–352. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Berke, R., Onsjö, M.: Propagation connectivity of random hyptergraphs. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 117–126. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Coja-Oghlan, A., Moore, C., Sanwalani, V.: Counting connected graphs and hypergraphs via the probabilistic method. Random Structure and Algorithms 31, 288–329 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Connamacher, H., Molloy, M.: The exact satisfiability threshold for a potentially intractable random constraint satisfaction problem. In: Proc. 45th Annual Symposium on Foundations of Computer Science (FOCS 2004), pp. 590–599. IEEE, Los Alamitos (2004)

    Google Scholar 

  5. Coja-Oghlan, A., Onsjö, M., Watanabe, O.: Propagation connectivity of random hypergraphs, Research Report C-271, Dept. Math. Comput. Sci., Tokyo Inst. of Tech. (2010)

    Google Scholar 

  6. Durrett, R.: Probability and examples, 3rd edn. (2005)

    Google Scholar 

  7. Darling, R.W.R., Norris, J.R.: Structure of large random hypergraphs. Ann. App. Probability 15(1A), 125–152 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Feller, W.: An introduction to probability theory and its applications. Wiley, Chichester (1950)

    MATH  Google Scholar 

  9. Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. Wiley, Chichester (2000)

    MATH  Google Scholar 

  10. Mitzenmacher, M., Upfal, E.: Probability and Computing, Randomized Algorithms and Probabilistic Analysis. Cambridge Univ. Press, Cambridge (2005)

    MATH  Google Scholar 

  11. Karp, R.M.: The transitive closure of a random digraph. Random Structures and Algorithms 1, 73–93 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Molloy, M.: Cores in random hypergraphs and Boolean formulas. Random Structures and Algorithms 27(1), 124–135 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coja-Oghlan, A., Onsjö, M., Watanabe, O. (2010). Propagation Connectivity of Random Hypergraphs. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2010 2010. Lecture Notes in Computer Science, vol 6302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15369-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15369-3_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15368-6

  • Online ISBN: 978-3-642-15369-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics