Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

We study the problem of monotonicity testing over the hypercube. As previously observed in several works, a positive answer to a natural question about routing properties of the hypercube network would imply the existence of efficient monotonicity testers. In particular, if any set of source-sink pairs on the directed hypercube (with all sources and all sinks distinct) can be connected with edge-disjoint paths, then monotonicity of functions \(f:{\{0,1\}}^n \rightarrow {\mathcal R}\) can be tested with O(n/ε) queries, for any totally ordered range \({\mathcal R}\). More generally, if at least a μ(n) fraction of the pairs can always be connected with edge-disjoint paths then the query complexity is O(n/(εμ(n)) ).

We construct a family of instances of Ω(2n) pairs in n-dimensional hypercubes such that no more than roughly a \(\frac{1}{\sqrt{n}}\) fraction of the pairs can be simultaneously connected with edge-disjoint paths. This answers an open question of Lehman and Ron [LR01], and suggests that the aforementioned appealing combinatorial approach for deriving query-complexity upper bounds from routing properties cannot yield, by itself, query-complexity bounds better than ≈ n 3/2. Additionally, our construction can also be used to obtain a strong counterexample to Szymanski’s conjecture about routing on the hypercube. In particular, we show that for any δ> 0, the n-dimensional hypercube is not \(n^{\frac 12 -\delta}\)-realizable with shortest paths, while previously it was only known that hypercubes are not 1-realizable with shortest paths.

We also prove a lower bound of Ω(n/ε) queries for one-sided non-adaptive testing of monotonicity over the n-dimensional hypercube, as well as additional bounds for specific classes of functions and testers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Al-Bashabsheh, A., Yongaçoglu, A.: On the k-pairs problem. CoRR, abs/0805.0050 (2008)

    Google Scholar 

  2. Ailon, N., Chazelle, B.: Information theory in property testing and monotonicity testing in higher dimension. Inf. Comput. 204(11), 1704–1717 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Adler, M., Harvey, N.J.A., Jain, K., Kleinberg, R.D., Lehman, A.R.: On the capacity of information networks. In: SODA, pp. 241–250 (2006)

    Google Scholar 

  4. Benes, V.E.: Mathematical theory of connecting networks and telephone traffic. Academic Press, New York (1965)

    MATH  Google Scholar 

  5. Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.: Transitive-closure spanners. In: SODA 2009: Proceedings of the Nineteenth Annual ACM -SIAM Symposium on Discrete Algorithms, pp. 932–941. Society for Industrial and Applied Mathematics, Philadelphia (2009)

    Google Scholar 

  6. Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.: Transitive-closure spanners of the hypercube and the hypergrid. Electronic Colloquium on Computational Complexity (ECCC) 09(046) (2009)

    Google Scholar 

  7. Bhattacharyya, A.: A note on the distance to monotonicity of boolean functions. Electronic Colloquium on Computational Complexity (ECCC) 15(012) (2008)

    Google Scholar 

  8. Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky, A.: Improved testing algorithms for monotonicity. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.) RANDOM 1999 and APPROX 1999. LNCS, vol. 1671, pp. 97–108. Springer, Heidelberg (1999)

    Google Scholar 

  9. Ergün, F., Kannan, S., Kumar, R., Rubinfeld, R., Viswanathan, M.: Spot-checkers. J. Comput. Syst. Sci. 60(3), 717–751 (2000)

    Article  Google Scholar 

  10. Fischer, E.: On the strength of comparisons in property testing. Inf. Comput. 189(1), 107–116 (2004)

    Article  MATH  Google Scholar 

  11. Fischer, E., Lehman, E., Newman, I., Raskhodnikova, S., Rubinfeld, R., Samorodnitsky, A.: Monotonicity testing over general poset domains. In: STOC, pp. 474–483 (2002)

    Google Scholar 

  12. Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.: Testing monotonicity. Combinatorica 20(3), 301–337 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Goldreich, O., Goldwasser, S., Lehman, E., Ron, D.: Testing monotonicity. In: FOCS, pp. 426–435 (1998)

    Google Scholar 

  14. Halevy, S., Kushilevitz, E.: Testing monotonicity over graph products. Random Struct. Algorithms 33(1), 44–67 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lehman, E., Ron, D.: On disjoint chains of subsets. J. Comb. Theory, Ser. A 94(2), 399–404 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lubiw, A.: Counterexample to a conjecture of szymanski on hypercube routing. Inf. Process. Lett. 35(2), 57–61 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Raskhodnikova, S.: Monotonicity testing. Master’s thesis, Department of Electrical Engineering and Computer Science. MIT, Cambridge, MA (1999)

    Google Scholar 

  18. Rasala-Lehman, A.: Network coding. PhD thesis, Department of Electrical Engineering and Computer Science. MIT, Cambridge, MA (2005)

    Google Scholar 

  19. Szymanski, T.H.: On the permutation capability of a circuit-switched hypercube. In: ICPP (1), pp. 103–110 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Briët, J., Chakraborty, S., García-Soriano, D., Matsliah, A. (2010). Monotonicity Testing and Shortest-Path Routing on the Cube. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2010 2010. Lecture Notes in Computer Science, vol 6302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15369-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15369-3_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15368-6

  • Online ISBN: 978-3-642-15369-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics