Nothing Special   »   [go: up one dir, main page]

Skip to main content

Lower Bounds for Local Monotonicity Reconstruction from Transitive-Closure Spanners

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (RANDOM 2010, APPROX 2010)

Abstract

Given a directed graph G = (V,E) and an integer k ≥ 1, a k-transitive-closure-spanner ( k-TC-spanner) of G is a directed graph H = (V, E H ) that has (1) the same transitive-closure as G and (2) diameter at most k. Transitive-closure spanners are a common abstraction for applications in access control, property testing and data structures.

We show a connection between 2-TC-spanners and local monotonicity reconstructors. A local monotonicity reconstructor, introduced by Saks and Seshadhri (SIAM Journal on Computing, 2010), is a randomized algorithm that, given access to an oracle for an almost monotone function f : [m]d →ℝ, can quickly evaluate a related function g : [m]d →ℝ which is guaranteed to be monotone. Furthermore, the reconstructor can be implemented in a distributed manner. We show that an efficient local monotonicity reconstructor implies a sparse 2-TC-spanner of the directed hypergrid (hypercube), providing a new technique for proving lower bounds for local monotonicity reconstructors. Our connection is, in fact, more general: an efficient local monotonicity reconstructor for functions on any partially ordered set (poset) implies a sparse 2-TC-spanner of the directed acyclic graph corresponding to the poset.

We present tight upper and lower bounds on the size of the sparsest 2-TC-spanners of the directed hypercube and hypergrid. These bounds imply tighter lower bounds for local monotonicity reconstructors that nearly match the known upper bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Peleg, D., Schäffer, A.A.: Graph spanners. Journal of Graph Theory 13, 99–116 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cowen, L.: Compact routing with minimum stretch. J. Algorithms 38, 170–183 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cowen, L., Wagner, C.G.: Compact roundtrip routing in directed networks. J. Algorithms 50, 79–95 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. JACM 36, 510–530 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Roditty, L., Thorup, M., Zwick, U.: Roundtrip spanners and roundtrip routing in directed graphs. In: SODA, pp. 844–851 (2002)

    Google Scholar 

  6. Thorup, M., Zwick, U.: Compact routing schemes. In: ACM Symposium on Parallel Algorithms and Architectures, pp. 1–10 (2001)

    Google Scholar 

  7. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J. Comput. 18, 740–747 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cohen, E.: Fast algorithms for constructing t-spanners and paths with stretch t. SIAM J. Comput. 28, 210–236 (1998)

    Article  MATH  Google Scholar 

  9. Cohen, E.: Polylog-time and near-linear work approximation scheme for undirected shortest paths. JACM 47, 132–166 (2000)

    Article  MATH  Google Scholar 

  10. Elkin, M.: Computing almost shortest paths. In: PODC, pp. 53–62 (2001)

    Google Scholar 

  11. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in expected \(\tilde{O} (n^2)\) time. ACM Transactions on Algorithms 2, 557–577 (2006)

    Article  MathSciNet  Google Scholar 

  12. Thorup, M., Zwick, U.: Approximate distance oracles. JACM 52, 1–24 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.P.: Transitive-closure spanners. In: SODA, pp. 932–941 (2009)

    Google Scholar 

  14. Saks, M., Seshadhri, C.: Local monotonicity reconstruction. SIAM Journal on Computing 39, 2897–2926 (2010)

    Article  Google Scholar 

  15. Ailon, N., Chazelle, B., Comandur, S., Liu, D.: Property-preserving data reconstruction. Algorithmica 51, 160–182 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.: Testing monotonicity. Combinatorica 20, 301–337 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky, A.: Improved testing algorithms for monotonicity. In: Rolim, J.D.P. (ed.) RANDOM 1997. LNCS, vol. 1269, pp. 97–108. Springer, Heidelberg (1997)

    Google Scholar 

  18. Thorup, M.: On shortcutting digraphs. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657, pp. 205–211. Springer, Heidelberg (1993)

    Google Scholar 

  19. Thorup, M.: Shortcutting planar digraphs. Combinatorics, Probability & Computing 4, 287–315 (1995)

    MATH  MathSciNet  Google Scholar 

  20. Hesse, W.: Directed graphs requiring large numbers of shortcuts. In: SODA, pp. 665–669 (2003)

    Google Scholar 

  21. Alon, N., Schieber, B.: Optimal preprocessing for answering on-line product queries. Technical Report 71/87, Tel-Aviv University (1987)

    Google Scholar 

  22. Atallah, M.J., Frikken, K.B., Fazio, N., Blanton, M.: Dynamic and efficient key management for access hierarchies. In: ACM Conference on Computer and Communications Security, pp. 190–202 (2005)

    Google Scholar 

  23. Chazelle, B.: Computing on a free tree via complexity-preserving mappings. Algorithmica 2, 337–361 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yao, A.C.C.: Space-time tradeoff for answering range queries (extended abstract). In: STOC, pp. 128–136 (1982)

    Google Scholar 

  25. Thorup, M.: Parallel shortcutting of rooted trees. J. Algorithms 23, 139–159 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bhattacharyya, A., Grigorescu, E., Jha, M., Jung, K., Raskhodnikova, S., Woodruff, D.P. (2010). Lower Bounds for Local Monotonicity Reconstruction from Transitive-Closure Spanners. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2010 2010. Lecture Notes in Computer Science, vol 6302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15369-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15369-3_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15368-6

  • Online ISBN: 978-3-642-15369-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics