Nothing Special   »   [go: up one dir, main page]

Skip to main content

Effective Algorithms for Fusion Gene Detection

  • Conference paper
Algorithms in Bioinformatics (WABI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6293))

Included in the following conference series:

  • 873 Accesses

Abstract

Chromosomal rearrangements which shape the genomes of cancer cells often result in fusion genes. Several recent studies have proposed using oligo microarrays targeting fusion junctions to detect fusion genes present in a sample. These approaches design a microarray targeted to discover known fusion genes by using a probe for each possible fusion junction. The hybridization of a sample to one of these probes suggests the presence of a fusion gene. Application of this approach is impractical to detect de-novo gene fusions due to the tremendous number of possible fusion junctions. In this paper we develop a novel approach related to string barcoding which reduces the number of probes necessary for de-novo gene fusion detection by a factor of 3000. The key idea behind our approach is that we utilize probes which match multiple fusion genes where each fusion gene is represented by a unique combination of probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Borneman, J., Chrobak, M., Della Vedova, G., Figueroa, A., Jiang, T.: Probe selection algorithms with applications in the analysis of microbial communities. Bioinformatics 17(suppl. 1), S39–S48 (2001)

    Google Scholar 

  2. UCSC Genome Browser, http://genome.ucsc.edu/

  3. Chen, W., et al.: Mapping translocation breakpoints by next-generation sequencing. Genome Res. 18(7), 1143–1149 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chun, S.-M.M., et al.: Identification of leukemia-specific fusion gene transcripts with a novel oligonucleotide array. Mol. Diagn. Ther. 11(1), 21–28 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. CPLEX, http://www.ilog.com/products/cplex/

  6. Dasgupta, B., Konwar, K.M., Mandoiu, I.I., Shvartsman, A.A.: Highly scalable algorithms for robust string barcoding. Int. J. Bioinform. Res. Appl. 1(2), 145–161 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. Lancia, G., Rizzi, R.: The approximability of the string barcoding problem. Algorithms Mol. Biol. 1, 12 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lu, Q., et al.: A sensitive array-based assay for identifying multiple tmprss2:erg fusion gene variants. Nucleic Acids Res. 36(20), e130 (2008)

    Google Scholar 

  9. Maher, C.A., et al.: Transcriptome sequencing to detect gene fusions in cancer. Nature 458(7234), 97–101 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mitelman, F., Johansson, B., Mertens, F.: The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer 7(4), 233–245 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. Nasedkina, T.V., et al.: Identification of chromosomal translocations in leukemias by hybridization with oligonucleotide microarrays. Haematologica 87(4), 363–372 (2002)

    CAS  PubMed  Google Scholar 

  12. Nasedkina, T.V., et al.: Clinical screening of gene rearrangements in childhood leukemia by using a multiplex polymerase chain reaction-microarray approach. Clin. Cancer Res. 9(15), 5620–5629 (2003)

    CAS  PubMed  Google Scholar 

  13. Rash, S., Gusfield, D.: String barcoding: uncovering optimal virus signatures. In: RECOMB 2002: Proceedings of the sixth annual international conference on Computational biology, pp. 254–261. ACM, New York (2002)

    Chapter  Google Scholar 

  14. Reis-Filho, J.S.: Next-generation sequencing. Breast Cancer Res 11(suppl. 3), S12 (2009)

    Google Scholar 

  15. Shi, R.Z., Morrissey, J.M., Rowley, J.D.: Screening and quantification of multiple chromosome translocations in human leukemia. Clin. Chem. 49(7), 1066–1073 (2003)

    Article  CAS  PubMed  Google Scholar 

  16. Skotheim, R.I., et al.: A universal assay for detection of oncogenic fusion transcripts by oligo microarray analysis. Mol. Cancer 8, 5 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  17. Teixeira, M.R.: Recurrent fusion oncogenes in carcinomas. Crit. Rev. Oncog. 12(3-4), 257–271 (2006)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

He, D., Eskin, E. (2010). Effective Algorithms for Fusion Gene Detection. In: Moulton, V., Singh, M. (eds) Algorithms in Bioinformatics. WABI 2010. Lecture Notes in Computer Science(), vol 6293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15294-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15294-8_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15293-1

  • Online ISBN: 978-3-642-15294-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics