Nothing Special   »   [go: up one dir, main page]

Skip to main content

Role of Soil Macrofauna in Phosphorus Cycling

  • Chapter
  • First Online:
Phosphorus in Action

Part of the book series: Soil Biology ((SOILBIOL,volume 26))

Abstract

Soil macrofauna (invertebrates larger than 2mm) live all or part of their life below ground. The activities of soil macroinvertebrates regulate soil organic matter transformations and nutrient dynamics to a significant extent. The role of earthworms and termites in soil phosphorus (P) cycling has been frequently studied, especially in tropical ecosystems. They produce biogenic structures, mainly casts for earthworms and mounds for termites, in which P contents and forms differ from those of the surrounding soil. Their overall activity markedly changes P availability in soils where they are active while biogenic structures also impact P transfer by infiltration or runoff when eroded. However, these effects vary according to the feeding and construction behaviors of the dominant macroinvertebrate groups. Macrofauna-mediated changes in soil P cycling deserve further research that includes upscaling at population levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Barois I, Lavelle P (1986) Changes in respiration rate and some physicochemical properties of a tropical soil during transit through Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta). Soil Biol Biochem 18:539–541

    Article  Google Scholar 

  • Bastardie F, Capowiez Y, de Dreuzy JR, Cluzeau D (2003) X-ray tomographic and hydraulic characterization of burrowing by three earthworm species in repacked soil cores. Appl Soil Ecol 24:3–16

    Article  Google Scholar 

  • Bates JAR (1960) Studies on Nigerian forest soils. I. The distribution of organic matter in the profile and in various soil fractions. J Soil Sci 11:246–256

    Article  CAS  Google Scholar 

  • Bignell DE, Eggleton P (2000) Termites in ecosystems. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer, Dordrecht, pp 363–387

    Chapter  Google Scholar 

  • Binet F, Le Bayon RC (1999) Space-time dynamics in situ of earthworm casts under temperate cultivated soils. Soil Biol Biochem 31:85–93

    Article  CAS  Google Scholar 

  • Blanchart E, Albrecht A, Brown G, Decaëns T, Duboisset A, Lavelle P, Mariani L, Roose E (2004) Effects of tropical endogeic earthworms on soil erosion. Agric Ecosyst Environ 104:303–315

    Article  Google Scholar 

  • Blanchart E, Marilleau N, Chotte JL, Drogoul A, Perrier E, Cambier C (2009) SWORM: an agent-based model to simulate the effect of earthworms on soil structure. Eur J Soil Sci 60:13–21

    Article  Google Scholar 

  • Bohlen J, Parmelee RW, Blair JM (2004) Integrating the effects of earthworms on nutrient cycling across spatial and temporal scales. In: Edwards CA (ed) Earthworm ecology, 2nd edn. CRC, Boca Raton, pp 183–200

    Google Scholar 

  • Bonell M, Coventry RJ, Holt JA (1986) Erosion of termite mounds under natural rainfall in semiarid tropical northeastern Australia. Catena 13:11–28

    Article  Google Scholar 

  • Bouché MB (1977) Stratégies lombriciennes. Ecol Bull 25:122–132

    Google Scholar 

  • Brossard M, Lavelle P, Laurent JY (1996) Digestion of a vertisol by the endogeic earthworm Polypheretima elongate, Megascolecidae, increases soil phosphate extractability. Eur J Soil Biol 32:107–111

    Google Scholar 

  • Brossard M, López-Hernández D, Lepage M, Leprun JC (2007) Nutrient storage in soils and nests of mound-building Trinervitermes termites in Central Burkina Faso: consequences for soil fertility. Biol Fertil Soils 43:437–447

    Article  CAS  Google Scholar 

  • Brown GG, Pashanasi B, Villenave C, Patron JC, Senapati BK, Giri S, Barois I, Lavelle P, Blanchart E, Blakemore RJ, Spain AV, Boyer J (1999) Effects of earthworms on plant production in the tropics. In: Lavelle P, Brussaard L, Hendrix P (eds) Earthworm management in tropical agroecosystems. CABI, Wallingford, pp 87–148

    Google Scholar 

  • Brown GG, Barois I, Lavelle P (2000) Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur J Soil Biol 26:177–198

    Article  Google Scholar 

  • Chapuis L, Brossard M (1995) Modifications et stabilité du phosphore échangeable d’un ferralsol ingéré par un ver géophage. CR Acad Sci II A 320:587–592

    CAS  Google Scholar 

  • Chapuis-Lardy L, Brossard M, Lavelle P, Schouller E (1998) Phosphorus transformations in a Ferralsol through ingestion by Pontoscolex corethrurus, a geophagous earthworm. Eur J Soil Biol 34:61–67

    Article  Google Scholar 

  • Chapuis-Lardy L, Ramiandrisoa RS, Randriamanantsoa L, Morel C, Rabeharisoa L, Blanchart E (2009) Modification of P availability by endogeic earthworms (Glossoscolecidae) in Ferralsols of the Malagasy Highlands. Biol Fertil Soils 45:415–422

    Article  Google Scholar 

  • Contour-Ansel D, Garnier-Sillam E, Lachaux M, Croci V (2000) High performance liquid chromatography studies on the polysaccharides in the walls of the mounds of two species of termite in Senegal, Cubitermes oculatus and Macrotermes subhyalinus: their origin and contribution to structural stability. Biol Fertil Soils 31:508–516

    Article  CAS  Google Scholar 

  • Coventry RJ, Holt JA, Sinclair DF (1988) Nutrient cycling by mound-building termites in low fertility soils of semi-arid tropical Australia. Aust J Soil Res 26:375–390

    Article  Google Scholar 

  • Curry JP, Schmidt O (2007) The feeding ecology of earthworms – a review. Pedobiologia 50:463–477

    Article  Google Scholar 

  • de Vleeschauwer D, Lal R (1981) Properties of worm casts in some tropical soils. Soil Sci 129:259–271

    Google Scholar 

  • Decaëns T, Rangel AF, Asakawa N, Thomas RJ (1999) Carbon and nitrogen dynamics in ageing earthworm casts in grasslands of the eastern plains of Colombia. Biol Fertil Soils 28:20–28

    Google Scholar 

  • Devliegher W, Verstraete W (1996) Lumbricus terrestris in a soil core experiment: effects of nutrient-enrichment processes (NEP) and gut-associated processes (GAP) on the availability of plant nutrients and heavy metals. Soil Biol Biochem 28:489–496

    Article  CAS  Google Scholar 

  • Edwards CA (1981) Earthworms, soil fertility and plant growth. In: Apelhof M (ed) Proceedings of workshop on the role of earthworms in the stabilization of organic residues. Western Michigan University, Kalamazoo, pp 61–85

    Google Scholar 

  • Elkins N, Sabol G, Ward T, Whitford W (1986) The influence of subterranean termites on the hydrological characteristics of a Chihuahuan desert ecosystem. Oecologia 68:521–528

    Article  Google Scholar 

  • Fardeau JC (1996) Dynamics of phosphate in soils – an isotopic outlook. Fertil Res 45:91–100

    Article  Google Scholar 

  • Fardeau JC, Frossard E (1992) Processus de transformations du phosphore dans les sols d’Afrique de l’Ouest semi aride: application au phosphore assimilable. In: Tiessen H, Frossard E (eds) Phosphorus cycles in terrestrial and aquatic systems of semi arid Africa. SCOPE/UNEP proceedings. University of Saskatchewan, Saskatoon, pp 108–128

    Google Scholar 

  • Frossard E, Brossard M, Hedley MJ, Metherell A (1995) Reactions controlling the cycling of P in soils. In: Tiessen H (ed) Phosphorus in the global environment. Transfers, cycles and management – SCOPE 54. Wiley, New York, pp 107–137

    Google Scholar 

  • Frossard E, Achat DL, Bernasconi SM, Bünemann EK, Fardeau J-C, Jansa J, Morel C, Rabeharisoa L, Randriamanantsoa L, Sinaj S, Tamburini F, Oberson A (2011) The use of tracers to investigate phosphate cycling in soil–plant systems. In: Bünemann EK, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi:10.1007/978-3-642-15271-9_3

    Google Scholar 

  • Garnier-Sillam E, Villemein G, Toutain F, Renoux J (1987) Contribution à l’étude du role des termites dans l’humification des sols forestiers tropicaux. In: Fedoroff N, Bresson JM, Courty MA (eds) Soil micromorphology. AFES, Plaisir, pp 331–335

    Google Scholar 

  • Graff O (1970) Phosphorus content in earthworm casts. Landbauforsch Volk 20:33–36

    CAS  Google Scholar 

  • Guggenberger G, Haumaier L, Thomas RJ, Zech W (1996) Assessing the organic phosphorous status of an Oxisol under tropical pastures following native savanna using 31P NMR spectroscopy. Biol Fertil Soils 23:332–339

    Article  CAS  Google Scholar 

  • Gupta ML, Sakal R (1967) The role of earthworms on the availability of nutrients in garden and cultivated soils. J Indian Soc Soil Sci 15:149–151

    Google Scholar 

  • Holt JA, Lepage M (2000) Termite and soil properties. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbiosis, ecology. Kluwer, Dordrecht, pp 389–407

    Chapter  Google Scholar 

  • James SW (1991) Soil, nitrogen, phosphorus, and organic matter processing by earthworms in tallgrass prairie. Ecology 72:2101–2109

    Article  Google Scholar 

  • Janeau JL, Valentin C (1987) Relations entre les termitières Trinervitermes sp. et la surface du sol: réorganisations, ruissellement et érosion. Rev Écol Biol Sol 24:637–647

    Google Scholar 

  • Jégou D, Cluzeau D, Hallaire V, Balesdent J, Tréhen P (2000) Burrowing activity of the earthworms Lumbricus terrestris and Aporrectodea giardi and consequences on C transfers in soil. Eur J Soil Biol 36:27–34

    Article  Google Scholar 

  • Jensen MB, Olsen TB, Hansen HCB, Magid J (2000) Dissolved and particulate phosphorus in leachate from structured soil amended with fresh cattle faeces. Nutr Cycl Agroecosyst 56:253–261

    Article  Google Scholar 

  • Jiménez JJ, Cepeda A, Decaëns T, Oberson A, Friesen DK (2003) Phosphorus fractions and dynamics in surface earthworm casts under native and improved grasslands in a Colombian savanna oxisol. Soil Biol Biochem 35:715–727

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Jouquet P, Tessier D, Lepage M (2004) The soil structural stability of termite nests: role of clays in Macrotermes bellicosus (Isoptera, Macrotermitinae) mound soils. Eur J Soil Biol 40:23–29

    Article  Google Scholar 

  • Jouquet P, Podwojewski P, Bottinelli N, Mathieu J, Ricoy M, Orange D, Tran TT, Valentin C (2008) Above-ground earthworm casts affect water runoff and soil erosion in Northern Vietnam. Catena 74:13–21

    Article  Google Scholar 

  • Kuczak CN, Fernandes ECM, Lehmann J, Rondon MA, Luizao FJ (2006) Inorganic and organic phosphorus pools in earthworm casts (Glossoscolecidae) and a Brazilian rainforest Oxisol. Soil Biol Biochem 38:553–560

    Article  CAS  Google Scholar 

  • Lal R (1987) Tropical ecology and physical edaphology. Wiley, Chichester

    Google Scholar 

  • Lal R (1988) Effects of macrofauna on soil properties in tropical ecosystems. Agric Ecosyst Environ 24:101–116

    Article  Google Scholar 

  • Lavelle P (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv Ecol Res 27:93–132

    Article  Google Scholar 

  • Lavelle P, Bignell DE, Lepage M, Volters V, Roger P, Ineson P, Heal W, Dillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193

    CAS  Google Scholar 

  • Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, Bureau F, Margerie P, Mora P, Rossi JP (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42:S3–S15

    Article  Google Scholar 

  • Le Bayon RC, Binet F (1999) Rainfall effects on erosion of earthworm casts and phosphorus transfer by water runoff. Biol Fertil Soils 30:7–13

    Article  Google Scholar 

  • Le Bayon RC, Binet F (2001) Earthworm surface casts affect soil erosion by runoff water and phosphorus transfer in a temperate maize crop. Pedobiologia 45:430–442

    Article  Google Scholar 

  • Le Bayon RC, Binet F (2006) Earthworms change the distribution and availability of phosphorus in organic substrates. Soil Biol Biochem 38:235–246

    Article  Google Scholar 

  • Le Bayon RC, Milleret R (2009) Effects of earthworms on phosphorus dynamics – a review. Dyn Soil Dyn Plant 3(2):21–27

    Google Scholar 

  • Le Bayon RC, Moreau S, Gascuel-Odoux C, Binet F (2002) Annual variations in earthworm surface-casting activity and soil transport by water runoff under a temperate maize agroecosytem. Geoderma 106:121–135

    Article  Google Scholar 

  • Lee KE (1985) Earthworms, their ecology and relationships with soils and land use. Academic, Bowen Hills

    Google Scholar 

  • Lee KE, Wood TG (1971) Termites and soils. Academic, London

    Google Scholar 

  • Léonard J, Rajot JL (2001) Influence of termites on runoff and infiltration: quantification and analysis. Geoderma 104:17–40

    Article  Google Scholar 

  • Léonard J, Perrier E, Rajot JL (2004) Biological macropores effect on runoff and infiltration: a combined experimental and modelling approach. Agric Ecosyst Environ 104:277–285

    Article  Google Scholar 

  • Leprun J-C, Roy-Noël J (1976) Minéralogie des argiles et répartition des nids épigés de deux espèces du genre Macrotermes au Sénégal occidental (Presqu’île du Cap-Vert). Insectes Soc 23:535–547

    Article  Google Scholar 

  • Leprun J-C, Roy-Noël J (1977) Les caractères analytiques distinctifs des matériaux des nids du genre Macrotermes au Sénégal occidental. Leurs rapports avec les sols. Pedobiologia 17:361–368

    CAS  Google Scholar 

  • López-Hernández D (2001) Nutrient dynamics (C, N and P) in termite mounds of Nasutitermes ephratae from savannas of the Orinoco llanos (Venezuela). Soil Biol Biochem 33:747–753

    Article  Google Scholar 

  • López-Hernández D, Febres A (1984) Changements chimiques et granulométriques produits dans des sols de Côte d’Ivoire par la présence de trois espèces de termites. Rev Écol Biol Sol 21:477–489

    Google Scholar 

  • López-Hernández D, Niño M, Fardeau JC, Nannipieri P, Chacón P (1989a) Phosphorus accumulation in savanna termite mound in Venezuela. J Soil Sci 40:635–640

    Article  Google Scholar 

  • López-Hernández D, Niño M, Nannipieri P, Fardeau JC (1989b) Phosphatase activity in Nasutitermes ephratae termite nest. Biol Fertil Soils 7:134–137

    Article  Google Scholar 

  • López-Hernández D, Lavelle P, Fardeau JC, Niño M (1993) Phosphorous transformations in two P-sorption contrasting tropical soils during transit through Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta). Soil Biol Biochem 25:789–792

    Article  Google Scholar 

  • López-Hernández D, Brossard M, Fardeau JC, Lepage M (2006) Effect of different termite feeding groups on P sorption and P availability in African and South American savannas. Biol Fertil Soils 42:207–214

    Article  Google Scholar 

  • Mariani L, Jiménez JJ, Torres EA, Amezquita E, Decaëns T (2007) Rainfall impact effects on ageing casts of a tropical anecic earthworm. Eur J Soil Sci 58:1525–1534

    Article  Google Scholar 

  • Martin A (1991) Short- and long-term effects of the endogeic earthworm Millsonia anomala (Omodeo) (Megascolecidae, Oligochaeta) of tropical savannas on soil organic matter. Biol Fertil Soils 11:234–238

    Article  Google Scholar 

  • Morel C, Tiessen H, Moir J, Stewart JWB (1994) Phosphorus transformations and availability due to crop rotations and mineral fertilization assessed by an isotopic exchange method. Soil Sci Soc Am J 58:1439–1445

    Article  CAS  Google Scholar 

  • Mulongoy K, Bedoret A (1989) Properties of worm casts and surface soils under various plant covers in the humid tropics. Soil Biol Biochem 21:197–203

    Article  Google Scholar 

  • Nijhawan SD, Kanwar JS (1952) Physicochemical properties of earthworm castings and their effect on the productivity of soil. Indian J Agric Sci 22:357–373

    CAS  Google Scholar 

  • Nooren CAM, van Breemen N, Stoorvogel JJ, Jongmans AG (1995) The role of earthworms in the formation of sandy surface soils in a tropical forest in Ivory Coast. Geoderma 65:135–148

    Article  CAS  Google Scholar 

  • Nutting WL, Haverty MI, Lafage JP (1987) Physical and chemical alteration by two subterranean termite species in Sonoran Desert grassland. J Arid Environ 12:233–239

    Google Scholar 

  • Nziguheba G, Bünemann EK (2005) Organic phosphorus dynamics in tropical agroecosystems. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CABI, Wallingford, pp 243–268

    Chapter  Google Scholar 

  • Okello-Oloya T, Spain AV, John RD (1985) Selected chemical characteristics of the mounds of two species of Amitermes (Isoptera, Termitinae) and their adjacent surface soil from Northeaestern Australia. Rev Écol Biol Sol 22:291–311

    CAS  Google Scholar 

  • Park SC, Smith TJ, Bisesi MS (1990) Hydrolysis of bis(4-nitro phenyl) phosphate by the earthworm Lumbricus terrestris. Soil Biol Biochem 22:729–730

    Article  CAS  Google Scholar 

  • Patrón JC, Sánchez P, Brown GG, Brossard M, Barois I, Gutiérrez C (1999) Phosphorus in soil and Brachiaria decumbens plants as affected by the geophagous earthworm Pontoscolex corethrurus and P fertilization. Pedobiologia 43:547–556

    Google Scholar 

  • Pomeroy DE (1983) Some effects of mound building termites on soils of Uganda. J Soil Sci 27:377–394

    Article  Google Scholar 

  • Roose E (1981) Dynamique actuelle de sols ferrallitiques et ferrugineux tropicaux d’Afrique occidentale. Étude expérimentale des transferts hydrologiques et biologiques de matières sous végétations naturelles ou cultivées. Trav Doc ORSTOM 130. ORSTOM, Paris

    Google Scholar 

  • Roose-Amsaleg C, Mora P, Harry M (2005) Physical, chemical and phosphatase activities characteristics in soil-feeding termite nests and tropical rainforest soils. Soil Biol Biochem 37:1910–1917

    Article  CAS  Google Scholar 

  • Rückamp D, Amelung W, Theisz N, Bandeira AG, Martius C (2010) Phosphorus forms in Brazilian termite nests and soils: relevance of feeding guild and ecosystems. Geoderma 155:269–279

    Article  Google Scholar 

  • Satchell JE, Martin K (1984) Phosphatase activity in earthworm faeces. Soil Biol Biochem 16:191–194

    Article  CAS  Google Scholar 

  • Scheu S, Parkinson D (1994a) Effects of earthworms on nutrient dynamics, carbon turnover and microorganisms in soil from cool temperate forests of the Canadian Rocky Mountains: laboratory studies. Appl Soil Ecol 1:113–125

    Article  Google Scholar 

  • Scheu S, Parkinson D (1994b) Effects of an invasion of an Aspen woodland (Alberta, Canada) by Dendrobaena octaedra on plant growth. Ecology 75:2348–2361

    Article  Google Scholar 

  • Sharpley AN, Syers JK (1976) Potential role of earthworms casts for the phosphorus enrichment of run-off water. Soil Biol Biochem 8:341–346

    Article  CAS  Google Scholar 

  • Sharpley AN, Syers JK (1977) Seasonal variation in casting activity and in the amounts and release to solution of phosphorous forms in earthworm casts. Soil Biol Biochem 9:227–231

    Article  CAS  Google Scholar 

  • Sharpley AN, Syers JK, Springett JA (1979) Effect of surface-casting earthworms on the transport of phosphorus and nitrogen in surface runoff from pasture. Soil Biol Biochem 11:459–462

    Article  CAS  Google Scholar 

  • Sinaj S, Buerkert A, El-Hajj G, Bationo A, Traore H, Frossard E (2001) Effects of fertility management strategies on phosphorus bioavailability in four West African soils. Plant Soil 233:71–83

    Article  CAS  Google Scholar 

  • Standing D, Baggs EM, Wattenbach M, Smith P, Killham K (2007) Meeting the challenge of scaling up processes in the plant–soil–microbe system. Biol Fertil Soils 44:245–257

    Article  Google Scholar 

  • Suarez ER, Fahey TJ, Groffman PM, Bohlen PJ, Fisk MC (2004) Effects of exotic earthworms on soil phosphorus cycling in two broadleaf temperate forests. Ecosystems 7:28–44

    Article  CAS  Google Scholar 

  • Tuffen F, Eason WR, Scullion J (2002) The effect of earthworms and arbuscular mycorrhizal fungi on growth of and 32P transfer between Allium porrum plants. Soil Biol Biochem 34:1027–1036

    Article  CAS  Google Scholar 

  • Wood TG, Johnson RA, Anderson JM (1983) Modification of soils in Nigerian savanna by soil-feeding Cubitermes, Termitidae. Soil Biol Biochem 15:575–579

    Article  Google Scholar 

  • Zhang BG, Li GT, Shen TS, Wang JK, Sun Z (2000) Changes in microbial biomass C, N and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eisenia fetida. Soil Biol Biochem 32:2055–2062

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydie Chapuis-Lardy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Chapuis-Lardy, L., Le Bayon, RC., Brossard, M., López-Hernández, D., Blanchart, E. (2011). Role of Soil Macrofauna in Phosphorus Cycling. In: Bünemann, E., Oberson, A., Frossard, E. (eds) Phosphorus in Action. Soil Biology, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15271-9_8

Download citation

Publish with us

Policies and ethics