Nothing Special   »   [go: up one dir, main page]

Skip to main content

Simulation of How Neuromodulation Influences Cooperative Behavior

  • Conference paper
From Animals to Animats 11 (SAB 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6226))

Included in the following conference series:

Abstract

Neuromodulators can have a strong effect on how organisms cooperate and compete for resources. To better understand the effect of neuromodulation on cooperative behavior, a computational model of the dopaminergic and serotonergic systems was constructed and tested in games of conflict and cooperation. This neural model was based on the assumptions that dopaminergic activity increases as expected reward increases, and serotonergic activity increases as the expected cost of an action increases. The neural model guided the behavior of an agent that played a series of Hawk-Dove games against an opponent. The agent adapted its behavior appropriately to changes in environmental conditions and to changes in its opponent’s strategy. The neural agent tended to engage in Hawk-like behavior in low-risk situations and Dove-like behavior in high-risk situations. When the simulated dopaminergic activity was greater than the serotonergic activity, the agent tended to escalate a fight. These results suggest how the neuromodulatory systems shape decision-making and adaptive behavior in competitive and cooperative situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schultz, W., Dayan, P., Montague, P.R.: A neural substrate of prediction and reward. Science 275, 1593–1599 (1997)

    Article  Google Scholar 

  2. Berridge, K.C.: Motivation concepts in behavioral neuroscience. Physiol. Behav. 81, 179–209 (2004)

    Article  Google Scholar 

  3. Millan, M.J.: The neurobiology and control of anxious states. Prog. Neurobiol. 70, 83–244 (2003)

    Article  Google Scholar 

  4. Crockett, M.J., Clark, L., Tabibnia, G., Lieberman, M.D., Robbins, T.W.: Serotonin modulates behavioral reactions to unfairness. Science 320, 1739 (2008)

    Article  Google Scholar 

  5. Maynard Smith, J.: Evolution and the theory of games. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  6. Wood, R.M., Rilling, J.K., Sanfey, A.G., Bhagwagar, Z., Rogers, R.D.: Effects of tryptophan depletion on the performance of an iterated Prisoner’s Dilemma game in healthy adults. Neuropsychopharmacology 31, 1075–1084 (2006)

    Article  Google Scholar 

  7. Roussos, P., Giakoumaki, S.G., Pavlakis, S., Bitsios, P.: Planning, decision-making and the COMT rs4818 polymorphism in healthy males. Neuropsychologia 46, 757–763 (2008)

    Article  Google Scholar 

  8. Axelrod, R., Hamilton, W.D.: The evolution of cooperation. Science 211, 1390–1396 (1981)

    Article  MathSciNet  Google Scholar 

  9. Hasselmo, M.E., McGaughy, J.: High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. Prog. Brain Res. 145, 207–231 (2004)

    Article  Google Scholar 

  10. Krichmar, J.L.: The Neuromodulatory System – A Framework for Survival and Adaptive Behavior in a Challenging World. Adaptive Behavior 16, 385–399 (2008)

    Article  Google Scholar 

  11. Cox, B.R., Krichmar, J.L.: Neuromodulation as a Robot Controller: A Brain Inspired Design Strategy for Controlling Autonomous Robots. IEEE Robotics & Automation Magazine 16, 72–80 (2009)

    Article  Google Scholar 

  12. Nowak, M., Sigmund, K.: A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner’s Dilemma game. Nature 364, 56–58 (1993)

    Article  Google Scholar 

  13. Amat, J., Paul, E., Zarza, C., Watkins, L.R., Maier, S.F.: Previous experience with behavioral control over stress blocks the behavioral and dorsal raphe nucleus activating effects of later uncontrollable stress: role of the ventral medial prefrontal cortex. J. Neurosci. 26, 13264–13272 (2006)

    Article  Google Scholar 

  14. Watson, K.K., Ghodasra, J.H., Platt, M.L.: Serotonin transporter genotype modulates social reward and punishment in rhesus macaques. PLoS ONE e4156 (2009)

    Google Scholar 

  15. Cools, R., Roberts, A.C., Robbins, T.W.: Serotoninergic regulation of emotional and behavioural control processes. Trends Cogn. Sci. 12, 31–40 (2008)

    Article  Google Scholar 

  16. Daw, N.D., Kakade, S., Dayan, P.: Opponent interactions between serotonin and dopamine. Neural Netw. 15, 603–616 (2002)

    Article  Google Scholar 

  17. Denk, F., Walton, M.E., Jennings, K.A., Sharp, T., Rushworth, M.F., Bannerman, D.M.: Differential involvement of serotonin and dopamine systems in cost-benefit decisions about delay or effort. Psychopharmacology (Berl) 179, 587–596 (2005)

    Article  Google Scholar 

  18. Pauli, W.M., O’Reilly, R.C.: Attentional control of associative learning-A possible role of the central cholinergic system. Brain Res. 1202, 43–53 (2008)

    Article  Google Scholar 

  19. Aston-Jones, G., Cohen, J.D.: An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual Review of Neuroscience 28, 403–450 (2005)

    Article  Google Scholar 

  20. Doya, K.: Metalearning and neuromodulation. Neural Netw. 15, 495–506 (2002)

    Article  Google Scholar 

  21. Schweighofer, N., Tanaka, S.C., Doya, K.: Serotonin and the evaluation of future rewards: theory, experiments, and possible neural mechanisms. Annals of the New York Academy of Sciences 1104, 289–300 (2007)

    Article  Google Scholar 

  22. Redgrave, P., Gurney, K.: The short-latency dopamine signal: a role in discovering novel actions? Nature Reviews 7, 967–975 (2006)

    Article  Google Scholar 

  23. Sandholm, T.W., Crites, R.H.: Multiagent reinforcement learning in the Iterated Prisoner’s Dilemma. Biosystems 37, 147–166 (1996)

    Article  Google Scholar 

  24. Harrald, P.G., Fogel, D.B.: Evolving continuous behaviors in the Iterated Prisoner’s Dilemma. Biosystems 37, 135–145 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zaldivar, A., Asher, D.E., Krichmar, J.L. (2010). Simulation of How Neuromodulation Influences Cooperative Behavior. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, JA., Mouret, JB. (eds) From Animals to Animats 11. SAB 2010. Lecture Notes in Computer Science(), vol 6226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15193-4_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15193-4_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15192-7

  • Online ISBN: 978-3-642-15193-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics