Nothing Special   »   [go: up one dir, main page]

Skip to main content

Noisy-or Nodes for Conditioning Models

  • Conference paper
From Animals to Animats 11 (SAB 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6226))

Included in the following conference series:

  • 1437 Accesses

Abstract

In order to adapt the behavior of robots to varying environments, conditioning models provide interesting ideas. A prediction system is an important part of such models. The problem is to update it according to the sequence of stimuli perceived by the robot. Bayesian networks can be used to implement the prediction system. However, update rules are very complex and we need an incremental and fast learning process. We propose the use of noisy or nodes with appropriate learning rules. Numerous features of conditioning have been tested and promising results have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balkenius, C., Morén, J.: Computational models of classical conditioning: a comparative study. In: Mayer, J.-A., Roitblat, H.L., Wilson, S.W., Blumberg, B. (eds.) From Animals to Animats, vol. 5. MIT Press, Cambridge (1998)

    Google Scholar 

  2. Balkenius, C.: Attention, habituation and conditioning: toward a computational model. Cognitive Science Quarterly 1(2), 171–214 (2000)

    Google Scholar 

  3. Bertin, M., Schweighofer, N., Doya, K.: Multiple model-based reinforcement learning explains dopamine neuronal activity. Neural Networks 20, 668–675 (2007)

    Article  MATH  Google Scholar 

  4. Commons, M.L., Grossberg, S., Staddon, J.E.R. (eds.): Neural Network Models of Conditioning and Action. Lawrence Erlbaum Associates, Hillsdale (1991)

    Google Scholar 

  5. Cooper, G.: Computational complexity of probalistic inference using Bayesian belief networks. Artificial Intelligence 42(2), 393–405 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cooper, G., Hersovits, E.: A bayesian method for the induction of probalistics networks from data. Machine Learning 9, 309–347 (1992)

    MATH  Google Scholar 

  7. Courville, A.C., Daw, N.D., Touretzky, D.S.: Bayesian theories of conditioning in a changing world. Trends in Cognitive Sciences 10(7), 294–300 (2006)

    Article  MathSciNet  Google Scholar 

  8. Daw, N.D., Courville, A.C., Touretzky, D.S.: Representation and Timing in Theories of the Dopamine System. Neural Computation 18, 1637–1677 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hall, J.: Backward conditioning in Pavlovian type studies. Integrative Psychological and Behavioral Science (1984)

    Google Scholar 

  10. Kehoe, E.J., Schreurs, B.G., AModei, N.: Blocking Acquisition of the Rabitt’s Nictating membrane Response to Serial Conditioned Stimuli. Learning and Motivation 12, 92–108 (1981)

    Article  Google Scholar 

  11. Klopf, A.: A neuronal model of classical conditioning. Psychobiology 16(2), 85–125 (1988)

    Google Scholar 

  12. Lungarella, M., Metta, G., Pfeifer, R., Sandini, G.: Developmental robotics: a survey. Connection Science 15(4), 151–190 (2003)

    Article  Google Scholar 

  13. Pavlov, I.P.: Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex (translated by G. V. Anrep). Oxford University Press, London (1927)

    Google Scholar 

  14. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers, Inc., San Mateo (1988)

    Google Scholar 

  15. Rescorla, R.A., Wagner, A.R.: A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In: Black, A.H., Prokasy, W.F. (eds.) Classical conditioning II: Current Research and Theory, pp. 64–99. Appleton-Century-Crofts, New York (1972)

    Google Scholar 

  16. Rescorla, R.A.: Spontaneous recovery from overexpectation. Learning and Behavior 34(1) (2006)

    Google Scholar 

  17. Salotti, J.M., Lepretre, F.: Classical and Operant Conditioning as Roots of Interaction for Robots. In: Proceedings of the Workshop From Motor to Interaction Learning in Robots, Conference on Intelligent Robotics Systems, Nice, September 22–26 (2008)

    Google Scholar 

  18. Schmajuk, N.A., Larrauri, J.A.: Experimental challenges to theories of classical conditioning: Application of an attentional model of storage and retrieval. Journal of Experimental Psychology: Animal Behavior Processes 32, 1–20 (2006)

    Article  Google Scholar 

  19. Silva, F.J., Timberlake, W.: A Clarification of the Nature of Backward Excitatory Conditioning. Learning and Motivation 31, 67–80 (2000)

    Article  Google Scholar 

  20. Sutton, R.S., Barto, A.G.: A temporal-difference model of classical conditioning. In: Proceedings of the 9th Annual Conference of the Cognitive Science Society, pp. 355–378 (1987)

    Google Scholar 

  21. Sutton, R.S., Barto, A.G.: Time-derivative models of Pavlovian reinforcement. In: Gabriel, M., Moore, J. (eds.) Learning and Computational Neuroscience: Foundations of Adaptive Networks, pp. 497–537. MIT Press, Cambridge (1990)

    Google Scholar 

  22. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salotti, J.M. (2010). Noisy-or Nodes for Conditioning Models. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, JA., Mouret, JB. (eds) From Animals to Animats 11. SAB 2010. Lecture Notes in Computer Science(), vol 6226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15193-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15193-4_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15192-7

  • Online ISBN: 978-3-642-15193-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics