Abstract
A combination of behavioural testing and robotic modelling was used to investigate the interaction between sound localisation (phonotaxis) and optomotor following in crickets. Three hypotheses describing simple interactions — summation, gain modulation and chaining — were eliminated, leaving efference copy as the most likely mechanism. A speculative but plausible model for predicting re-afference was implemented and evaluated on a robot.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
von Holst, E.: The Behavioural Physiology of Animals and Man. Methuen, London (1973)
Egelhaaf, M.: Dynamic Properties of two Control Systems underlying Visually Guided Turning in House-Flies. J. Comp. Physiol. A 161, 777–783 (1987)
Webb, B., Harrison, R.: Integrating Sensorimotor Systems in a Robot Model of Cricket Behaviour. SPIE 4196, 113–124 (2000)
Webb, B., Reeve, R.: Reafferent or Redundant: Integration of Phonotaxis and Optomotor Behaviour in Crickets and Robots. Adaptive Behavior 11(3), 137–158 (2003)
Collett, T.: Angular Tracking and the Optomotor Response: An Analysis of Visual Reflex Interaction in a Hoverfly. J. Comp. Physiol. A 140, 145–158 (1980)
Hedwig, B., Poulet, J.: Mechanisms Underlying Phonotactic Steering in the Cricket Gryllus Bimaculatus Revealed with a Fast Trackball System. J. Exp. Biol. 208, 915–927 (2005)
Lund, H., Webb, B., Hallam, J.: A Robot Attracted to the Cricket Species Gryllus bimaculatus. In: 4th European Conference on Artificial Life, pp. 246–255. MIT Press/Bradford Books (1997)
Huber, S., Bülthoff, H.: Simulation and Robot Implementation of Visual Orientation Behaviour of Flies. In: From Animals to Animats, vol. 5, pp. 77–85. MIT Press, Cambridge (1998)
Harrison, R., Koch, C.: A Silicon Implementation of the Fly’s Optomotor Control System. Neural Computation 12, 2291–2304 (2000)
Hassenstein, B., Reichardt, W.: Systemtheoretische Analyse der Zeit-, Reihenfolgen-, und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z. Naturforschung 11(b), 513–524 (1956)
Payne, M.: Co-ordinating Behaviours in an Insect Biorobot. Unpublished Ph.D. Thesis, University of Edinburgh, UK (2010)
Böhm, H., Schildberger, K., Huber, F.: Visual and Acoustic Control in the Cricket Gryllus bimaculatus. J. Exp. Biol. 159, 235–248 (1991)
Maass, W., Natschläger, T.: Real-Time Computation Without Stable States: A New Framework for Neural Computation Based on Perturbations. Neural Computation 14, 2531–2560 (2002)
Kawato, M.: Internal Models for Motor Control and Trajectory Planning. Curr. Opin. Neurobiology 9(6), 718–727 (1999)
Schildberger, K.: Multimodal Interneurons In The Cricket Brain - Properties of Identified Extrinsic Mushroom Body Cells. J. Comp. Physiol. A 154(1), 74–79 (1984)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Payne, M., Hedwig, B., Webb, B. (2010). Multimodal Predictive Control in Crickets. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, JA., Mouret, JB. (eds) From Animals to Animats 11. SAB 2010. Lecture Notes in Computer Science(), vol 6226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15193-4_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-15193-4_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15192-7
Online ISBN: 978-3-642-15193-4
eBook Packages: Computer ScienceComputer Science (R0)