Nothing Special   »   [go: up one dir, main page]

Skip to main content

Limiting Negations in Bounded Treewidth and Upward Planar Circuits

  • Conference paper
Mathematical Foundations of Computer Science 2010 (MFCS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6281))

Abstract

The decrease of a Boolean function f : {0,1}n →{0,1}, denoted by d(f) is the maximum number of inverse indices in any increasing chain of inputs \(x_1, \ldots ,x_\ell \in \{0,1\}^n\), where i is an inverse index if f(x i ) > f(x i + 1). It follows from a theorem of Markov (JACM 1958) that the minimum number of negation gates in a circuit necessary and sufficient to compute any Boolean function f is ⌈log(d(f) + 1) ⌉. A recent result due to Morizumi (ICALP 2009) proves that d(f) negations are necessary and sufficient when the computation is done by formulas. We explore the situation in between formulas (directed trees) and general circuits (DAGs), and related models. We obtain the following results:

  1. 1

    We argue that for any Boolean function f, there is a circuit computing f, that uses ⌈log(d(f) + 1) ⌉ negations and has treewidth at most ⌈log(d(f) + 1)⌉ + 1. For 1 ≤ k ≤ ⌈log(d(f) + 1) ⌉, we prove that d(f)·8k/2k negations are sufficient to compute any Boolean function f by circuits of treewidth at most k. Moreover, if there is a circuit family of size s = s(n) and treewidth k = k(n) computing {f n }, then there exists a circuit family of size s·n O(1)·2O( min {k,logn}) and treewidth at most 2k which computes {f n } and contains O( max {nk/22k,logn}) negation gates.

  2. 1

    We obtain tight bounds on the number of negation gates required to compute specific functions such as \(\textsc{Parity}_{n},\overline{\textsc{Parity}_{n}}\) and \(\textsc{Inverter}_n\) by one-input-face upward planar circuits. We extend these lower bounds to a larger class of functions (which also includes natural functions like Add and Subtract) and we show a direct sum theorem for this class with respect to the number of negations.

  3. 1

    We demonstrate the limitations of the one-input-face constraint in the upward planar circuits by showing the explicit function which can be computed by a monotone upward planar circuit, but cannot be computed by any montone one-input-face upward planar circuit.

  4. 1

    We prove that for every Boolean function f, there exists a multilective upward planar circuit which uses at most \(\lceil \frac{d(f)+1}{2}\rceil\) negation gates for computing f.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amano, K., Maruoka, A.: A superpolynomial lower bound for a circuit computing the clique function with at most (1/6)log log n negation gates. SIAM Journal of Computing 35(1), 201–216 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barrington, D.A.M., Lu, C.-J., Miltersen, P.B., Skyum, S.: On Monotone Planar Circuits. In: Proceedings of the 14th Annual IEEE Conference on Computational Complexity (CCC), pp. 24–31 (1999)

    Google Scholar 

  3. Beynon, M., Buckle, J.: On the planar monotone computation of boolean functions. Theor. Comput. Sci. 53(2-3), 267–279 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fischer, M.: The complexity of negation-limited networks (a brief survey). LNCS, vol. 33, pp. 71–82. Springer, Heidelberg (1974)

    Google Scholar 

  5. Jansen, M., Sarma, M.N., Jayalal: Balancing Bounded Treewidth Circuits. In: Proeedings of CSR 2010 (to appear 2010)

    Google Scholar 

  6. Karchmer, M., Wigderson, A.: Monotone circuits for connectivity require super-logarithmic depth. In: Proc. of STOC 1988, pp. 539–550 (1988)

    Google Scholar 

  7. Limaye, N., Mahajan, M., Sarma, M.N.J.: Upper bounds for monotone planar circuit value and variants. Computational Complexity 18(3), 377–412 (2009)

    Article  MathSciNet  Google Scholar 

  8. Markov, A.A.: On the inversion complexity of a system of functions. J. ACM 5(4), 331–334 (1958)

    Article  MATH  Google Scholar 

  9. Markov, I.L., Shi, Y.: Simulating quantum computation by contracting tensor networks. SIAM J. Comput. 38(3), 963–981 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. McColl, W.F.: On the planar monotone computation of threshold functions. In: Mehlhorn, K. (ed.) STACS 1985. LNCS, vol. 182, pp. 219–230. Springer, Heidelberg (1984)

    Chapter  Google Scholar 

  11. Morizumi, H.: Limiting negations in formulas. In: Albers, S., et al. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 701–712. Springer, Heidelberg (2009)

    Google Scholar 

  12. Raz, R., Wigderson, A.: Monotone circuits for matching require linear depth. In: STOC 1990: Proceedings of the twenty-second annual ACM symposium on Theory of computing, pp. 287–292 (1990)

    Google Scholar 

  13. Razborov, A.A.: Lower bounds on the monotone complexity of some boolean functions. Soviet Math. Dokl. 281, 798–801 (1985)

    MathSciNet  Google Scholar 

  14. Santha, M., Wilson, C.: Limiting negations in constant depth circuits. SIAM J. Comput. 22(2), 294–302 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Savage, J.E.: The performance of multilective vlsi algorithms. Journal of Computer and System Science 29(2), 243–273 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sung, S.C., Tanaka, K.: Limiting negations in bounded-depth circuits: An extension of markovs theorem. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 108–116. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Tardos, E.: The Gap Between Monotone and Non-monotone Circuit Complexity is Exponential. Combinatorica 7, 393–394 (1987)

    MathSciNet  Google Scholar 

  18. Valiant, L.G.: Short monotone formulae for the majority function. J. Algorithms 5(3), 363–366 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  19. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer, New York (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

He, J., Liang, H., Sarma, J.M.N. (2010). Limiting Negations in Bounded Treewidth and Upward Planar Circuits. In: Hliněný, P., Kučera, A. (eds) Mathematical Foundations of Computer Science 2010. MFCS 2010. Lecture Notes in Computer Science, vol 6281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15155-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15155-2_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15154-5

  • Online ISBN: 978-3-642-15155-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics