Nothing Special   »   [go: up one dir, main page]

Skip to main content

Strict Canonical Constructive Systems

  • Chapter
Fields of Logic and Computation

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6300))

Abstract

We define the notions of a canonical inference rule and a canonical constructive system in the framework of strict single-conclusion Gentzen-type systems (or, equivalently, natural deduction systems), and develop a corresponding general non-deterministic Kripke-style semantics. We show that every strict constructive canonical system induces a class of non-deterministic Kripke-style frames, for which it is strongly sound and complete. This non-deterministic semantics is used for proving a strong form of the cut-elimination theorem for such systems, and for providing a decision procedure for them. These results identify a large family of basic constructive connectives, including the standard intuitionistic connectives, together with many other independent connectives.

This research was supported by The Israel Science Foundation (grant no. 809-06).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avron, A.: Simple Consequence Relations. Information and Computation 92, 105–139 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avron, A.: Gentzen-Type Systems, Resolution and Tableaux. Journal of Automated Reasoning 10, 265–281 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Avron, A.: Nondeterministic View on Nonclassical Negations. Studia Logica 80, 159–194 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Avron, A.: Non-deterministic Semantics for Families of Paraconsistent Logics. In: Beziau, J.-Y., Carnielli, W., Gabbay, D.M. (eds.) Handbook of Paraconsistency. Studies in Logic, vol. 9, pp. 285–320. College Publications (2007)

    Google Scholar 

  5. Avron, A., Lahav, O.: Canonical constructive systems. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 62–76. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Avron, A., Lev, I.: Canonical Propositional Gentzen-Type Systems. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 529–544. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Avron, A., Lev, I.: Non-deterministic Multiple-valued Structures. Journal of Logic and Computation 15, 24–261 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Belnap, N.D.: Tonk, Plonk and Plink. Analysis 22, 130–134 (1962)

    Article  Google Scholar 

  9. Bowen, K.A.: An extension of the intuitionistic propositional calculus. Indagationes Mathematicae 33, 287–294 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ciabattoni, A., Terui, K.: Towards a Semantic Characterization of Cut-Elimination. Studia Logica 82, 95–119 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fernandez, D.: Non-deterministic Semantics for Dynamic Topological Logic. Annals of Pure and Applied Logic 157, 110–121 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gentzen, G.: Investigations into Logical Deduction. In: Szabo, M.E. (ed.) The Collected Works of Gerhard Gentzen, pp. 68–131. North Holland, Amsterdam (1969)

    Google Scholar 

  13. Gurevich, Y., Neeman, I.: The Logic of Infons, Microsoft Research Tech. Report MSR-TR-2009-10 (January 2009)

    Google Scholar 

  14. Kripke, S.: Semantical Analysis of Intuitionistic Logic I. In: Crossly, J., Dummett, M. (eds.) Formal Systems and Recursive Functions, pp. 92–129. North-Holland, Amsterdam (1965)

    Chapter  Google Scholar 

  15. Prior, A.N.: The Runabout Inference Ticket. Analysis 21, 38–39 (1960)

    Article  Google Scholar 

  16. Sundholm, G.: Proof theory and Meaning. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 9, pp. 165–198 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Avron, A., Lahav, O. (2010). Strict Canonical Constructive Systems. In: Blass, A., Dershowitz, N., Reisig, W. (eds) Fields of Logic and Computation. Lecture Notes in Computer Science, vol 6300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15025-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15025-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15024-1

  • Online ISBN: 978-3-642-15025-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics