Nothing Special   »   [go: up one dir, main page]

Skip to main content

Adaptive Algorithms for Planar Convex Hull Problems

  • Conference paper
Frontiers in Algorithmics (FAW 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6213))

Included in the following conference series:

Abstract

We study problems in computational geometry from the viewpoint of adaptive algorithms. Adaptive algorithms have been extensively studied for the sorting problem, and in this paper we generalize the framework to geometric problems. To this end, we think of geometric problems as permutation (or rearrangement) problems of arrays, and define the “presortedness” as a distance from the input array to the desired output array. We call an algorithm adaptive if it runs faster when a given input array is closer to the desired output, and furthermore it does not make use of any information of the presortedness. As a case study, we look into the planar convex hull problem for which we discover two natural formulations as permutation problems. An interesting phenomenon that we prove is that for one formulation the problem can be solved adaptively, but for the other formulation no adaptive algorithm can be better than an optimal output-sensitive algorithm for the planar convex hull problem.

Work by Ahn was supported by the National IT Industry Promotion Agency (NIPA) under the program of Software Engineering Technologies Development. Work by Okamoto was supported by Global COE Program “Computationism as a Foundation for the Sciences” and Grant-in-Aid for Scientific Research from Ministry of Education, Science and Culture, Japan, and Japan Society for the Promotion of Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baran, I., Demaine, E.D.: Optimal adaptive algorithms for finding the nearest and farthest point on a parametric black-box curve. Internat. J. Comput. Geom. Appl. 15, 327–350 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbay, J., Chen, E.Y.: Convex hull of the union of convex objects in the plane: an adaptive analysis. In: Proc. 20th CCCG, pp. 47–51 (2008)

    Google Scholar 

  3. Barbay, J., Golynski, A., Munro, J.I., Rao, S.S.: Adaptive searching in succinctly encoded binary relations and tree-structured documents. Theor. Comput. Sci. 387, 284–297 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbay, J., Kenyon: Adaptive intersection and t-threshold problems. In: Proc. 13th SODA, pp. 390–399 (2002)

    Google Scholar 

  5. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Comm. ACM 18, 509–517 (1975)

    Article  MATH  Google Scholar 

  6. Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for selection. J. Comput. Syst. Sci. 7, 448–461 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bose, P., Maheshwari, A., Morin, P., Morrison, J., Smid, M., Vahrenhold, J.: Space-efficient geometric divide-and-conquer algorithms. Comput. Geom. 37, 209–227 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brodal, G.S., Fagerberg, R., Moruz, G.: Cache-aware and cache-oblivious adaptive sorting. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 576–588. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Brönnimann, H., Chan, T.M., Chen, E.Y.: Towards in-place geometric algorithms and data structures. In: Proc. 20th SCG, pp. 239–246 (2004)

    Google Scholar 

  10. Brönnimann, H., Iacono, J., Katajainen, J., Morin, P., Morrison, J., Toussaint, G.T.: Space-efficient planar convex hull algorithms. Theor. Comput. Sci. 321, 25–40 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Adaptive set intersections, unions, and differences. In: Proc. 11th SODA, pp. 743–752 (2000)

    Google Scholar 

  12. Elmasry, A.: Priority queues, pairing, and adaptive sorting. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 183–194. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Elmasry, A., Fredman, M.L.: Adaptive sorting: an information theoretic perspective. Acta Inform. 45, 33–42 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Estivill-Castro, V., Wood, D.: Practical adaptive sorting. In: Dehne, F., Fiala, F., Koczkodaj, W.W. (eds.) ICCI 1991. LNCS, vol. 497, pp. 47–54. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  15. Estivill-Castro, V., Wood, D.: A survey of adaptive sorting algorithms. ACM Comput. Surveys 24, 441–476 (1992)

    Article  Google Scholar 

  16. Guibas, L.J., McCreight, E.M., Plass, M.F., Roberts, J.R.: A new representation of linear lists. In: Proc. 9th STOC, pp. 49–60 (1977)

    Google Scholar 

  17. Kapoor, S., Ramanan, P.: Lower bounds for maximal and convex layers problems. Algorithmica 4, 447–459 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kirkpatrick, D.G., Seidel, R.: The ultimate planar convex hull algorithm? SIAM J. Comput. 15, 287–299 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Levcopoulos, C., Lingas, A., Mitchell, J.S.B.: Adaptive algorithms for constructing convex hulls and triangulations of polygonal chains. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 80–89. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Levcopoulos, C., Petersson, O.: Splitsort—An adaptive sorting algorithm. Infor. Proc. Lett. 39, 205–211 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Levcopoulos, C., Petersson, O.: Adaptive Heapsort. J. Algor. 14, 395–413 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mannila, H.: Measures of presortedness and optimal sorting algorithms. IEEE Trans. Comput. 34, 318–325 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mehlhorn, K.: Data Structures and Algorithms. Sorting and Searching, vol. 1. Springer, Heidelberg (1984)

    MATH  Google Scholar 

  24. Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. ACM 31, 114–127 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pagh, A., Pagh, R., Thorup, M.: On adaptive integer sorting. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 556–567. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ahn, HK., Okamoto, Y. (2010). Adaptive Algorithms for Planar Convex Hull Problems. In: Lee, DT., Chen, D.Z., Ying, S. (eds) Frontiers in Algorithmics. FAW 2010. Lecture Notes in Computer Science, vol 6213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14553-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14553-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14552-0

  • Online ISBN: 978-3-642-14553-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics