Abstract
We study problems in computational geometry from the viewpoint of adaptive algorithms. Adaptive algorithms have been extensively studied for the sorting problem, and in this paper we generalize the framework to geometric problems. To this end, we think of geometric problems as permutation (or rearrangement) problems of arrays, and define the “presortedness” as a distance from the input array to the desired output array. We call an algorithm adaptive if it runs faster when a given input array is closer to the desired output, and furthermore it does not make use of any information of the presortedness. As a case study, we look into the planar convex hull problem for which we discover two natural formulations as permutation problems. An interesting phenomenon that we prove is that for one formulation the problem can be solved adaptively, but for the other formulation no adaptive algorithm can be better than an optimal output-sensitive algorithm for the planar convex hull problem.
Work by Ahn was supported by the National IT Industry Promotion Agency (NIPA) under the program of Software Engineering Technologies Development. Work by Okamoto was supported by Global COE Program “Computationism as a Foundation for the Sciences” and Grant-in-Aid for Scientific Research from Ministry of Education, Science and Culture, Japan, and Japan Society for the Promotion of Science.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baran, I., Demaine, E.D.: Optimal adaptive algorithms for finding the nearest and farthest point on a parametric black-box curve. Internat. J. Comput. Geom. Appl. 15, 327–350 (2005)
Barbay, J., Chen, E.Y.: Convex hull of the union of convex objects in the plane: an adaptive analysis. In: Proc. 20th CCCG, pp. 47–51 (2008)
Barbay, J., Golynski, A., Munro, J.I., Rao, S.S.: Adaptive searching in succinctly encoded binary relations and tree-structured documents. Theor. Comput. Sci. 387, 284–297 (2007)
Barbay, J., Kenyon: Adaptive intersection and t-threshold problems. In: Proc. 13th SODA, pp. 390–399 (2002)
Bentley, J.L.: Multidimensional binary search trees used for associative searching. Comm. ACM 18, 509–517 (1975)
Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for selection. J. Comput. Syst. Sci. 7, 448–461 (1972)
Bose, P., Maheshwari, A., Morin, P., Morrison, J., Smid, M., Vahrenhold, J.: Space-efficient geometric divide-and-conquer algorithms. Comput. Geom. 37, 209–227 (2007)
Brodal, G.S., Fagerberg, R., Moruz, G.: Cache-aware and cache-oblivious adaptive sorting. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 576–588. Springer, Heidelberg (2005)
Brönnimann, H., Chan, T.M., Chen, E.Y.: Towards in-place geometric algorithms and data structures. In: Proc. 20th SCG, pp. 239–246 (2004)
Brönnimann, H., Iacono, J., Katajainen, J., Morin, P., Morrison, J., Toussaint, G.T.: Space-efficient planar convex hull algorithms. Theor. Comput. Sci. 321, 25–40 (2004)
Demaine, E.D., López-Ortiz, A., Munro, J.I.: Adaptive set intersections, unions, and differences. In: Proc. 11th SODA, pp. 743–752 (2000)
Elmasry, A.: Priority queues, pairing, and adaptive sorting. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 183–194. Springer, Heidelberg (2002)
Elmasry, A., Fredman, M.L.: Adaptive sorting: an information theoretic perspective. Acta Inform. 45, 33–42 (2008)
Estivill-Castro, V., Wood, D.: Practical adaptive sorting. In: Dehne, F., Fiala, F., Koczkodaj, W.W. (eds.) ICCI 1991. LNCS, vol. 497, pp. 47–54. Springer, Heidelberg (1991)
Estivill-Castro, V., Wood, D.: A survey of adaptive sorting algorithms. ACM Comput. Surveys 24, 441–476 (1992)
Guibas, L.J., McCreight, E.M., Plass, M.F., Roberts, J.R.: A new representation of linear lists. In: Proc. 9th STOC, pp. 49–60 (1977)
Kapoor, S., Ramanan, P.: Lower bounds for maximal and convex layers problems. Algorithmica 4, 447–459 (1989)
Kirkpatrick, D.G., Seidel, R.: The ultimate planar convex hull algorithm? SIAM J. Comput. 15, 287–299 (1986)
Levcopoulos, C., Lingas, A., Mitchell, J.S.B.: Adaptive algorithms for constructing convex hulls and triangulations of polygonal chains. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 80–89. Springer, Heidelberg (2002)
Levcopoulos, C., Petersson, O.: Splitsort—An adaptive sorting algorithm. Infor. Proc. Lett. 39, 205–211 (1991)
Levcopoulos, C., Petersson, O.: Adaptive Heapsort. J. Algor. 14, 395–413 (1993)
Mannila, H.: Measures of presortedness and optimal sorting algorithms. IEEE Trans. Comput. 34, 318–325 (1985)
Mehlhorn, K.: Data Structures and Algorithms. Sorting and Searching, vol. 1. Springer, Heidelberg (1984)
Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. ACM 31, 114–127 (1984)
Pagh, A., Pagh, R., Thorup, M.: On adaptive integer sorting. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 556–567. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ahn, HK., Okamoto, Y. (2010). Adaptive Algorithms for Planar Convex Hull Problems. In: Lee, DT., Chen, D.Z., Ying, S. (eds) Frontiers in Algorithmics. FAW 2010. Lecture Notes in Computer Science, vol 6213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14553-7_30
Download citation
DOI: https://doi.org/10.1007/978-3-642-14553-7_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14552-0
Online ISBN: 978-3-642-14553-7
eBook Packages: Computer ScienceComputer Science (R0)