Nothing Special   »   [go: up one dir, main page]

Skip to main content

Danger Theory and Intrusion Detection: Possibilities and Limitations of the Analogy

  • Conference paper
Artificial Immune Systems (ICARIS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6209))

Included in the following conference series:

  • 771 Accesses

Abstract

Metaphors derived from Danger Theory, a hypothesized model of how the human immune system works, have been applied to the intrusion detection domain. The major contribution in this area, is the dendritic cell algorithm (DCA). This paper presents an in-depth analysis of results obtained from two previous experiments, regarding the suitability of the danger theory analogy in constructing intrusion detection systems for web applications. These detectors would be capable of detecting novel attacks while improving on the limitations of anomaly-based intrusion detectors. In particular, this analysis investigates which aspects of this analogy are suitable for this purpose, and which aspects of the analogy are counterproductive if utilized in the way originally suggested by danger theory. Several suggestions are given for those aspects of danger theory that are identified to require modification, indicating the possibility of further pursuing this approach. These modifications could be realized in terms of developing a robust signal selection schema and a suitable correlation algorithm. This would allow for an intrusion detection approach that has the potential to overcome those limitations presently associated with existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aickelin, U., Bentley, P., Cayzer, P., Kim, J., McLeod, J.: Danger theory: The link between AIS and IDS? In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 147–155. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Aickelin, U., Cayzer, P.: The danger theory and its application to artificial immune systems. In: Proceedings of ICARIS 2002. LNCS, Springer, Heidelberg (2002)

    Google Scholar 

  3. Axelsson, S.: The base-rate fallacy and the difficulty of intrusion detection. ACM Transactions on Information and System Security (2000)

    Google Scholar 

  4. Ayara, M., Timmis, J., de Lemos, R., Duncan, R.: Negative selection: How to generate detectors. In: Proceedings of 1st ICARIS (2002)

    Google Scholar 

  5. Baker, A.R., Esler, J.: Snort IDS and IPS Toolkit. Syngress (2007)

    Google Scholar 

  6. Cheswick, W., Bellovin, S., Rubin, A.: Firewalls and Internet Security: Repelling the Wiley Hacker, 2nd edn. Addison-Wesley, Reading (2003)

    Google Scholar 

  7. Clarke, J., Dhanjani, N.: Network Security Tools. O’Reilly, Sebastopol (2005)

    Google Scholar 

  8. D’haeseleer, P., Forrest, S., Helman, P.: An immunological approach to change detection: Algorithms, analysis, and implications. In: Proceedings of the 1996 IEEE Symposium on Security and Privacy (1996)

    Google Scholar 

  9. Erickson, J.: Hacking: The Art of Exploitation, 2nd edn. No Starch (2008)

    Google Scholar 

  10. Forrest, S., Perelson, A., Allen, L., Cherukuri, R.: Self-nonself discrimination. In: Proceedings of the 1994 IEEE Symposium on Security and Privacy (1994)

    Google Scholar 

  11. Greensmith, J., Aickelin, U.: The Dendritic Cell Algorithm. PhD thesis, University of Nottingham (2007)

    Google Scholar 

  12. Greensmith, J., Aickelin, U.: The deterministic dendritic cell algorithm. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 291–302. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Greensmith, J., Aickelin, U., Cayzer, S.: Introducing dendritic cells as a novel immune-inspired algorithm for anomaly detection. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 153–167. Springer, Heidelberg (2005)

    Google Scholar 

  14. Greensmith, J., Aickelin, U., Twycross, J.: Articulation and clarification of the dendritic cell algorithm. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Gu, F., Greensmith, J., Ackelin, U.: Further exploration of the dendritic cell algorithm:Antigen multiplier and time windows. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 142–153. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Helman, P., Forrest, S., Esponda, F.: A formal framework for positive and negative detection schemes. IEEE Transaction on Systems, Man, and Cybernetic (2004)

    Google Scholar 

  17. Helman, P., Liepins, G.: Statistical foundations of audit trail analysis for the detection of computer misuse. IEEE Transactions on Software Engineering (1993)

    Google Scholar 

  18. Hofmeyr, S., Forrest, S.: Architecture for an artificial immune system. IEEE Transactions on Evolutionary Computation (2000)

    Google Scholar 

  19. Hofmeyr, S., Forrest, S., Somayaji, A.: Intrusion detection using sequences of system calls. Journal of Computer Security (1998)

    Google Scholar 

  20. Howard, M., Le Blanc, D., Viega, J.: 19 Deadly Sins of Software Security: Programming Flaws and How to Fix Them. McGraw-Hill/Osborne, New York (2005)

    Google Scholar 

  21. Ingham, K.L., Inoue, H.: Comparing anomaly detection techniques for http. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 42–62. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Kim, J., Bentley, P.: The human immune system and network intrusion detection. In: EUFIT 1999 Proceedings (1999)

    Google Scholar 

  23. Kim, J., Bentley, P.: An evaluation of negative selection in an artificial immune system for network intrusion detection. In: GECCO 2001 Proceedings (2001)

    Google Scholar 

  24. King, S.T., Chen, P.M.: Backtracking intrusions. In: Proceedings of the 19th ACM symposium on Operating Systems Principles, SOSP 2003 (2003)

    Google Scholar 

  25. Kruegel, C., Vigna, G., Robertson, W.: A multi-model approach to the detection of web-based attacks. Computer Networks 48(5) (2005)

    Google Scholar 

  26. Long, J., Bayles, A., Foster, J., Hurley, C., Petruzzi, M., Rathaus, N., Wolfgang, M.: Penetration Tester’s Open Source Toolkit. Syngress (2006)

    Google Scholar 

  27. Maggi, F., Robertson, W., Kruegel, C., Vigna, G.: Protecting a moving target: Addressing web application concept drift. In: Balzarotti, D. (ed.) RAID 2009. LNCS, vol. 5758, pp. 21–40. Springer, Heidelberg (2009)

    Google Scholar 

  28. Matzinger, P.: The danger model: A renewed sense of self. Science (2002)

    Google Scholar 

  29. Northcutt, S., Zeltser, L., Winters, S., Kent, K., Ritchey, R.: Inside Network Perimeter Security. Sams (2005)

    Google Scholar 

  30. Riden, J., McGeehan, R., Engert, B., Mueter, M.: Web application threats. Know Your Enemy (2008)

    Google Scholar 

  31. Scambray, J., Shema, M., Sima, C.: Hacking Exposed - Web Applications, 2nd edn. McGraw-Hill, New York (2006)

    Google Scholar 

  32. Somayaji, A., Hofmeyr, S., Forrest, S.: Principles of a computer immune system. In: Proceedings of the 1997 New Security Paradigms Workshop (1997)

    Google Scholar 

  33. Twycross, J., Aickelin, U.: libtissue - a software system for incorporating innate immunity into artificial immune systems (2006), http://www.cpib.ac.uk/~jpt/papers/libtissue-tecv.pdf

  34. Vella, M., Roper, M., Terzis, S.: Achieving anomaly detection effectiveness beyond the symmetric error lower bound, in web-based systems (2009), http://www.cis.strath.ac.uk/~mv/trep1.pdf

  35. Vella, M., Roper, M., Terzis, S.: Characterization of a danger context for detecting novel attacks targetig web-based systems (2010), http://www.cis.strath.ac.uk/~mv/trep2.pdf

  36. Wang, W., Guyet, T., Knapskog, S.J.: Autonomic intrusion detection system. In: Balzarotti, D. (ed.) RAID 2009. LNCS, vol. 5758, pp. 359–361. Springer, Heidelberg (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vella, M., Roper, M., Terzis, S. (2010). Danger Theory and Intrusion Detection: Possibilities and Limitations of the Analogy. In: Hart, E., McEwan, C., Timmis, J., Hone, A. (eds) Artificial Immune Systems. ICARIS 2010. Lecture Notes in Computer Science, vol 6209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14547-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14547-6_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14546-9

  • Online ISBN: 978-3-642-14547-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics