Abstract
Modern cryptography provides a variety of tools and methodologies to analyze and to prove the security of cryptographic schemes such as in [6–9]. These proofs always start from a particular setting with a well-defined adversary
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Due to the lack of space, we consider here the simplest case, being a three rounds Luby–Rackoff cipher and a chosen-plaintext attackers.
- 2.
Although the fuzzy extractor usually reduces the output length, such situation can exist if the output length of the PUF is bigger than the input length.
- 3.
As the randomization is done for every encryption, we omit for simplicity the superscripts \((i)\) at the values.
- 4.
The output of the first inverter is connected to the input of the second one and vice versa.
- 5.
For example, choosing \({\ensuremath{\delta}}\) large enough such that \(\Pr[\hbox{more than} \delta \hbox{bit errors in}\;m \;\textrm{its}] \leq 10^{-9}\) will generally assure that more than \({\ensuremath{\delta}}\) bit errors will never occur in practice in a single response.
- 6.
- 7.
By consequence, also no min-entropy on the PUF input is leaked.
References
D. Agrawal, B. Archambeault, J.R. Rao, P. Rohatgi, in The Em Side-Channel(s), ed. by B.S. Kaliski Jr., C.K. Koç, C. Paar. CHES. Lecture Notes in Computer Science, vol. 2523 (Springer, Berlin, 2002), pp. 29–45
A. Akavia, S. Goldwasser, V. Vaikuntanathan, in Simultaneous Hardcore Bits and Cryptography Against Memory Attacks, ed. by O. Reingold. TCC. Lecture Notes in Computer Science, vol. 5444 (Springer, Berlin, Heidelberg, 2009), pp. 474–495
R.J. Anderson, M.G. Kuhn, in Low Cost Attacks on Tamper Resistant Devices. Proceedings of the 5th International Workshop on Security Protocols (Springer, London), pp. 125–136
M. Bellare, A. Desai, E. Jokipii, P. Rogaway, in A Concrete Security Treatment of Symmetric Encryption. FOCS ’97: Proceedings of the 38th Annual Symposium on Foundations of Computer Science (FOCS ’97) (IEEE Computer Society, Washington, DC, 1997), p. 394
M. Bellare, J. Kilian, P. Rogaway, in The Security of Cipher Block Chaining. CRYPTO ’94: Proceedings of the 14th Annual International Cryptology Conference on Advances in Cryptology (Springer, London, 1994), pp. 341–358
M. Bellare, D. Pointcheval, P. Rogaway, in Authenticated Key Exchange Secure Against Dictionary Attacks. EUROCRYPT (Springer, Berlin, 2000), pp. 139–155
M. Bellare, P, Rogaway, in Entity Authentication and Key Distribution. CRYPTO ’93: Proceedings of the 13th Annual International Cryptology Conference on Advances in Cryptology (Springer, London, 1994), pp. 232–249
M. Bellare, P. Rogaway, in Provably Secure Session Key Distribution: The Three Party Case. STOC ’95: Proceedings of the Twenty-seventh Annual ACM Symposium on Theory of Computing (ACM, New York, NY, 1995), pp. 57–66
R. Canetti, H. Krawczyk, in Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels. EUROCRYPT ’01: Proceedings of the International Conference on the Theory and Application of Cryptographic Techniques (Springer, London, 2001), pp. 453–474
N. Chandran, V. Goyal, A. Sahai, in New Constructions for UC Secure Computation Using Tamper-Proof Hardware. Advances in Cryptology – EUROCRYPT 2008 (Springer, Berlin, Heidelberg, 2008), pp. 545–562
B. Chor, O. Goldreich, Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988)
L. Daihyun, J.W. Lee, B. Gassend, G.E. Suh, M. van Dijk, S. Devadash, Extracting secret keys from integrated circuits. IEEE Trans. VLSI Syst. 13(10), 1200–1205 (Oct 2005)
Y. Dodis, R. Ostrovsky, L. Reyzin, A. Smith, Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)
S. Dziembowski, K. Pietrzak, in Leakage-Resilient Cryptography. FOCS ’08: Proceedings of the 2008 49th Annual IEEE Symposium on Foundations of Computer Science (IEEE Computer Society, Washington, DC, 2008), pp. 293–302
B. Gassend, D. Clarke, M. van Dijk, S. Devadas, in Controlled Physical Random Functions. Annual Computer Security Applications Conference — ACSAC 2002 (IEEE Computer Society, Washington, DC, 2002), pp. 149
B. Gassend, D. Clarke, M. van Dijk, S. Devadas, in Silicon Physical Unknown Functions. ed. by V. Atluri. ACM Conference on Computer and Communications Security — CCS 2002 (ACM, New York, NY), pp. 148–160
G. Gaubatz, B. Sunar, M. Karpovsky, in Non-linear Residue Codes for Robust Public-Key Arithmetic. Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC ’06), Yokohama, Japan, 2006
R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, T. Rabin, in Algorithmic Tamper-Proof (ATP) Security: Theoretical Foundations for Security Against Hardware Tampering. Theory of Cryptography Conference (TCC’04). Lecture Notes in Computer Science, vol. 2951 (Springer, Heidelberg, 2004), pp. 258–277
O. Goldreich, Foundations of Cryptography: Volume 1, Basic Tools (Cambridge University Press, New York, NY, 2001)
O. Goldreich, S. Goldwasser, S. Micali, in On the Cryptographic Applications of Random Functions. Proceedings of CRYPTO 84 on Advances in Cryptology (Springer-Verlag New York, Inc., New York, NY, 1985), pp. 276–288
O. Goldreich, S. Goldwasser, S. Micali, How to construct random functions. J. ACM 33(4), 792–807 (1986)
J. Guajardo, S. Kumar, G.-J. Schrijen, P. Tuyls, in FPGA Intrinsic PUFs and Their Use for IP Protection. ed. by P. Paillier, I. Verbauwhede. Cryptographic Hardware and Embedded Systems — CHES 2007, 10–13 Sept. Lecture Notes in Computer Science, vol. 4727 (Springer, Berlin, Heidelberg, 2007), pp. 63–80
J. Guajardo, S. Kumar, P. Tuyls, R. Maes, D. Schellekens, Reconfigurable Trusted Computing with Physical Unclonable Functions. June 2008
J.A. Halderman, S.D. Schoen, N. Heninger, W. Clarkson, W. Paul, J.A. Calandrino, A.J. Feldman, J. Appelbaum, E.W. Felten, in Lest We Remember: Cold Boot Attacks on Encryption Keys. ed. by P.C. van Oorschot. USENIX Security Symposium. (USENIX Association, Berkeley, CA, 2008), pp. 45–60
T. Ignatenko, F. Willems, in On the Security of the XOR-Method in Biometric Authentication Systems. Twenty-seventh Symposium on Information Theory in the Benelux, Noordwijk, The Netherlands, 2006, pp. 197–204
Y. Ishai, A. Sahai, D. Wagner, in Private Circuits: Securing Hardware Against Probing Attacks. CRYPTO, Santa Barbara, CA, 2003, pp. 463–481
M. Karpovsky, K. Kulikowski, A. Taubin, in Robust Protection Against Fault-Injection Attacks on Smart Cards Implementing the Advanced Encryption Standard.. Proceedings of the International Conference on Dependable Systems and Networks (DNS 2004), Florence, Italy, 28 June–1 July 2004
J. Katz, in Universally Composable Multi-Party Computation Using Tamper-Proof Hardware. Advances in Cryptology – EUROCRYPT, Barcelona, Spain, 20–24 May 2007 (Springer, 2007), pp. 115–128
P. Kocher, J. Jaffe, B. Jun, in Differential Power Analysis. Proc. of CYRPTO ’99 Santa Barbara, CA, USA, 15–19 Aug. Lecture Notes in Computer Science, vol. 1666 (Springer, 1999) pp. 388–397
P.C. Kocher, in Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. ed. by N. Koblitz. CRYPTO. Lecture Notes in Computer Science, vol. 1109 (Springer, London, 1996), pp. 104–113
S.S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, P. Tuyls, in The Butterfly PUF: Protecting IP on Every FPGA. IEEE International Workshop on Hardware-Oriented Security and Trust – HOST 2008, Anaheim, CA, USA, 9 Jun (IEEE, Piscataway, NJ, 2008)
K. Lemke, in Embedded Security: Physical Protection Against Tampering Attacks. ed. by C. Paar, K. Lemke, M. Wolf. Embedded Security in Cars, Chapter 2 (Springer, Berlin, Heidelberg, 2006), pp. 207–217
M. Luby, Pseudo-Randomness and Applications (Princeton University Press, Princeton, NJ, 1996)
M. Luby, C. Rackoff, How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)
U. Maurer, R. Renner, S. Wolf, in Security with Noisy Data, Part I (Springer, 2007), pp. 21–44
S. Micali, L. Reyzin, in Physically Observable Cryptography (Extended Abstract). ed by M. Naor. Theory of Cryptography, First Theory of Cryptography Conference, (TCC 2004), Cambridge, MA, USA, 19–21 Feb, Proceedings. Lecture Notes in Computer Science, vol. 2951 (Springer, 2004), pp. 278–296
T. Moran, G. Segev, in David and Goliath Commitments: UC Computation for Asymmetric Parties Using Tamper-Proof Hardware. Advances in Cryptology – EUROCRYPT, Istanbul, Turkey, 13-17 April 2008 (Springer, 2008), pp. 527–544
M. Naor, G. Segev, in Public-Key Cryptosystems Resilient to Key Leakage. Proceedings of the 29th Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, CA, USA, 16–20 Aug 2009, Lecture Notes in Computer Science, vol. 5677 (Springer Verlag, Berlin, Heidelberg, New York, NY, 2009), pp. 18–35
N. Nisan, D. Zuckerman, in More Deterministic Simulation in Logspace. STOC ’93: Proceedings of the 25th Annual ACM Symposium on Theory of Computing (ACM, New York, NY, 1993), pp. 235–244
J. Patarin, V. Nachef, C. Berbain, in Generic Attacks on Unbalanced Feistel Schemes with Expanding Functions. ed by K. Kurosawa. Advances in Cryptology - ASIACRYPT 2007, 13th International Conference on the Theory and Application of Cryptology and Information Security, Kuching, Malaysia, 2–6, Dec 2007, Proceedings. Lecture Notes in Computer Science, vol. 4833 (Springer, 2007), pp. 325–341
K. Pietrzak, in A Leakage-Resilient Mode of Operation. ed. by A. Joux. EUROCRYPT, Cologne, Germany. Lecture Notes in Computer Science, vol. 5479 (Springer, Berlin, Heidelberg, 2009), pp. 462–482
R. Posch, Protecting devices by active coating. J. Univers. Comput. Sci. 4, 652–668 (1998)
O. Regev, in On Lattices, Learning with Errors, Random LOinear Codes, and Cryptography. Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005, pp. 84–93
D. Samyde, S. Skorobogatov, R. Anderson, J.-J. Quisquater, in On a New Way to Read Data from Memory. SISW ’02: Proceedings of the First International IEEE Security in Storage Workshop (IEEE Computer Society, Washington, DC, 2002), p. 65
S.P. Skorobogatov, in Data Remanence in Flash Memory Devices. ed. by J.R. Rao, B, Sunar. CHES. Lecture Notes in Computer Science, vol. 3659 (Springer, Heidelberg, 2005), pp. 339–353
S.W. Smith, Fairy dust, secrets, and the real world. IEEE Secur. Priv. 1(1), 89–93 (2003)
F.-X. Standaert, T. Malkin, M. Yung, in A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks. EUROCRYPT, Cologne, Germany, 2009, pp. 443–461
G.E. Suh, S, Devadas, in Physical Unclonable Functions for Device Authentication and Secret Key Generation. Proceedings of the 44th Design Automation Conference, DAC 2007, San Diego, CA, USA, 4–8 June 2007 (ACM, New York, NY, 2007), pp. 9–14
P. Tuyls, G.-J. Schrijen, B. Škorić, J. van Geloven, N. Verhaegh, R. Wolters, in Read-Proof Hardware from Protective Coatings. ed. by L. Goubin, M. Matsui. Cryptographic Hardware and Embedded Systems — CHES 2006. Lecture Notes in Computer Science, vol. 4249 (Springer, Heidelberg, 10–13 Oct 2006), pp. 369–383
I. Verbauwhede, P. Schaumont, in Design Methods for Security and Trust. Proceedings of Design Automation and Test in Europe (DATE 2008), Nice, France, 2007, p. 6
S.H. Weingart, in Physical Security Devices for Computer Subsystems: A Survey of Attacks and Defences. CHES ’00: Proceedings of the Second International Workshop on Cryptographic Hardware and Embedded Systems (Springer, London, 2000), pp. 302–317
Acknowledgements
We thank Stefan Lucks for useful comments and discussions. The work of Berk Sunar was supported by the National Science Foundation Cybertrust grant No. CNS-0831416. The work of Roel Maes is funded by IWT-Flanders grant No. 71369 and is in part supported by the IAP Program P6/26 BCRYPT of the Belgian State and K.U.Leuven BOF funding (OT/06/04).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Armknecht, F., Maes, R., Sadeghi, AR., Sunar, B., Tuyls, P. (2010). Memory Leakage-Resilient Encryption Based on Physically Unclonable Functions. In: Sadeghi, AR., Naccache, D. (eds) Towards Hardware-Intrinsic Security. Information Security and Cryptography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14452-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-14452-3_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14451-6
Online ISBN: 978-3-642-14452-3
eBook Packages: Computer ScienceComputer Science (R0)