Abstract
In this paper, we present a method for coronary artery motion tracking in 4D cardiac CT angiogram data sets. The proposed method allows the construction of patient-specific 4D coronary motion model from pre-operative CTA which can be used for guiding totally endoscopic coronary artery bypass surgery (TECAB). The proposed approach consists of three steps: Firstly, the coronary arteries are extracted in the end-diastolic time frame using a minimal cost path approach. To achieve this, the start and end points of the coronaries are identified interactively and the minimal cost path between the start and end points is computed using A* graph search algorithm. Secondly, the cardiac motion is estimated throughout the cardiac cycle by using a non-rigid image registration technique based on a free-form B-spline transformation model and maximization of normalized mutual information. Finally, coronary arteries are tracked automatically through all other phases of the cardiac cycle. This is estimated by deforming the extracted coronaries at end-diastole to all other time frames according the motion field acquired in second step. The estimated coronary centerlines are then refined by template matching algorithm to improve the accuracy. We compare the proposed approach with two alternative approaches: The first approach is based on the minimal cost path extraction of the coronaries with start and end points manually identified in each time frame while the second approach is based on propagating the extracted coronaries from the end-diastolic time frame to other time frames using image-based non-rigid registration only. Our results show that the proposed approach performs more robustly than the non-rigid registration based method and that the resulting motion model is comparable to the motion model constructed from semi-automatic extractions of the coronaries in all time frames.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mohr, F.W., Falk, V., Diegeler, A., Walther, T., Gummert, J.F., Bucerius, J., Jacobs, S., Autschbach, R.: Computer-enhanced “robotic” cardiac surgery: Experience in 148 patients. Journal of Thoracic and Cardiovascular Surgery 121(5), 842–853 (2001)
Dogan, S., Aybek, T., Andressen, E., Byhahn, C., Mierdl, S., Westphal, K., Matheis, G., Moritz, A., Wimmer-Greinecker, G.: Totally endoscopic coronary artery bypass grafting on cardiopulmonary bypass with robotically enhanced telemanipulation: Report of forty-five cases. Journals of Thoracic Cardiovascular Surgery 123, 1125–1131 (2002)
Figl, M., Rueckert, D., Hawkes, D., Casula, R., Hu, M., Pedro, O., Zhang, D.P., Penney, G., Bello, F., Edwards, P.: Augmented reality image guidance for minimally invasive coronary artery bypass. In: Proc. SPIE, vol. 6918 (2008)
Figl, M., Rueckert, D., Hawkes, D., Casula, R., Hu, M., Pedro, O., Zhang, D., Penney, G., Bello, F., Edwards, P.: Image guidance for robotic minimally invasive coronary artery bypass. Computerized Medical Imaging and Graphics 34, 61–68 (2009)
Schaap, M., Metz, C.T., van Walsum, T., van der Giessen, A.G., Weustink, A.C., Mollet, N.R., Bauer, C., Bogunovifa, H., Castro, C., Deng, X., Dikici, E., ODonnell, T., Frenay, M., Friman, O., Hernandez Hoyos, M., Kitslaar, P.H., Krissian, K., Kuhnel, C., Luengo-Oroz, M.A., Orkisz, M., Smedby, O., Styner, M., Szymczak, A., Tek, H., Wang, C., Warfield, S.K., Zambal, S., Zhang, Y., Krestin, G.P., Niessen, W.J.: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Medical Image Analysis 13(5), 701–714 (2009)
Lesage, D., Angelini, E.D., Funka-Lea, G., Bloch, I.: A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Medical Image Analysis 13, 819–845 (2009)
Shechter, G., Devernay, F., Quyyumi, A., Coste-Maniere, E., McVeigh, E.: Three-dimensional motion tracking of coronary arteries in biplane cineangiograms. IEEE Transactions in Medical Imaging 22(4), 493–603 (2003)
Shechter, G., Resar, J.R., McVeigh, E.R.: Displacement and velocity of the coronary arteries: cardiac and respiratory motion. IEEE Transactions on Medical Imaging 25, 369–375 (2006)
Metz, C., Schaap, M., Klein, S., Neefjes, L., Capuano, E., Schultz, C., van Geuns, R.J., Serruys, P.W., van Walsum, T., Niessen, W.J.: Patient specific 4D coronary models from ECG-gated CTA data for intra-operative dynamic alignment of CTA with X-ray images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 369–376. Springer, Heidelberg (2009)
Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics gems IV, pp. 474–485. Academic Press Professional, Inc., San Diego (1994)
Weustink, A.C., Mollet, N.R., Pugliese, F., Meijboom, W.B., Nieman, K., Heijenbrok-Kal, M.H., Flohr, T.G., Neefjes, L.A., Cademartiri, F., de Feyter, P.J., Krestin, G.P.: Optimal electrocardiographic pulsing windows and heart rate: Effect on image quality and radiation exposure at dual-source coronary CT angiography. Radiology 248(3), 792–798 (2008)
Weickert, J.: Anisotropic Diffusion In Image Processing. Teubner-Verlag, Stuttgart (1998)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1), 62–66 (1979)
Frangi, A., Niessen, W., Hoogeveen, R., van Walsum, T., Viergever, M.: Model-based quantitation of 3D magnetic resonance angiographic images. IEEE Transactions on Medical Imaging 18(10), 946–956 (1999)
Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4(2), 100–107 (1968)
Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)
Friman, O., Hindennach, M., Peitgen, H.O.: Template-based multiple hypotheses tracking of small vessels. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1047–1050 (2008)
Friman, O., Hindennach, M., Khnel, C., Peitgen, H.O.: Multiple hypothesis template tracking of small 3d vessel structures. Medical Image Analysis (December 2009)
Li, H., Yezzi, A.: Vessels as 4d curves: Global minimal 4d paths to extract 3d tubular surfaces. In: Conference on Computer Vision and Pattern Recognition Workshop, CVPRW 2006, p. 82 (June 2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, D.P. et al. (2010). Nonrigid Registration and Template Matching for Coronary Motion Modeling from 4D CTA. In: Fischer, B., Dawant, B.M., Lorenz, C. (eds) Biomedical Image Registration. WBIR 2010. Lecture Notes in Computer Science, vol 6204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14366-3_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-14366-3_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14365-6
Online ISBN: 978-3-642-14366-3
eBook Packages: Computer ScienceComputer Science (R0)