Nothing Special   »   [go: up one dir, main page]

Skip to main content

Nonrigid Registration and Template Matching for Coronary Motion Modeling from 4D CTA

  • Conference paper
Biomedical Image Registration (WBIR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6204))

Included in the following conference series:

Abstract

In this paper, we present a method for coronary artery motion tracking in 4D cardiac CT angiogram data sets. The proposed method allows the construction of patient-specific 4D coronary motion model from pre-operative CTA which can be used for guiding totally endoscopic coronary artery bypass surgery (TECAB). The proposed approach consists of three steps: Firstly, the coronary arteries are extracted in the end-diastolic time frame using a minimal cost path approach. To achieve this, the start and end points of the coronaries are identified interactively and the minimal cost path between the start and end points is computed using A* graph search algorithm. Secondly, the cardiac motion is estimated throughout the cardiac cycle by using a non-rigid image registration technique based on a free-form B-spline transformation model and maximization of normalized mutual information. Finally, coronary arteries are tracked automatically through all other phases of the cardiac cycle. This is estimated by deforming the extracted coronaries at end-diastole to all other time frames according the motion field acquired in second step. The estimated coronary centerlines are then refined by template matching algorithm to improve the accuracy. We compare the proposed approach with two alternative approaches: The first approach is based on the minimal cost path extraction of the coronaries with start and end points manually identified in each time frame while the second approach is based on propagating the extracted coronaries from the end-diastolic time frame to other time frames using image-based non-rigid registration only. Our results show that the proposed approach performs more robustly than the non-rigid registration based method and that the resulting motion model is comparable to the motion model constructed from semi-automatic extractions of the coronaries in all time frames.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mohr, F.W., Falk, V., Diegeler, A., Walther, T., Gummert, J.F., Bucerius, J., Jacobs, S., Autschbach, R.: Computer-enhanced “robotic” cardiac surgery: Experience in 148 patients. Journal of Thoracic and Cardiovascular Surgery 121(5), 842–853 (2001)

    Article  Google Scholar 

  2. Dogan, S., Aybek, T., Andressen, E., Byhahn, C., Mierdl, S., Westphal, K., Matheis, G., Moritz, A., Wimmer-Greinecker, G.: Totally endoscopic coronary artery bypass grafting on cardiopulmonary bypass with robotically enhanced telemanipulation: Report of forty-five cases. Journals of Thoracic Cardiovascular Surgery 123, 1125–1131 (2002)

    Article  Google Scholar 

  3. Figl, M., Rueckert, D., Hawkes, D., Casula, R., Hu, M., Pedro, O., Zhang, D.P., Penney, G., Bello, F., Edwards, P.: Augmented reality image guidance for minimally invasive coronary artery bypass. In: Proc. SPIE, vol. 6918 (2008)

    Google Scholar 

  4. Figl, M., Rueckert, D., Hawkes, D., Casula, R., Hu, M., Pedro, O., Zhang, D., Penney, G., Bello, F., Edwards, P.: Image guidance for robotic minimally invasive coronary artery bypass. Computerized Medical Imaging and Graphics 34, 61–68 (2009)

    Article  Google Scholar 

  5. Schaap, M., Metz, C.T., van Walsum, T., van der Giessen, A.G., Weustink, A.C., Mollet, N.R., Bauer, C., Bogunovifa, H., Castro, C., Deng, X., Dikici, E., ODonnell, T., Frenay, M., Friman, O., Hernandez Hoyos, M., Kitslaar, P.H., Krissian, K., Kuhnel, C., Luengo-Oroz, M.A., Orkisz, M., Smedby, O., Styner, M., Szymczak, A., Tek, H., Wang, C., Warfield, S.K., Zambal, S., Zhang, Y., Krestin, G.P., Niessen, W.J.: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Medical Image Analysis 13(5), 701–714 (2009)

    Article  Google Scholar 

  6. Lesage, D., Angelini, E.D., Funka-Lea, G., Bloch, I.: A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Medical Image Analysis 13, 819–845 (2009)

    Article  Google Scholar 

  7. Shechter, G., Devernay, F., Quyyumi, A., Coste-Maniere, E., McVeigh, E.: Three-dimensional motion tracking of coronary arteries in biplane cineangiograms. IEEE Transactions in Medical Imaging 22(4), 493–603 (2003)

    Article  Google Scholar 

  8. Shechter, G., Resar, J.R., McVeigh, E.R.: Displacement and velocity of the coronary arteries: cardiac and respiratory motion. IEEE Transactions on Medical Imaging 25, 369–375 (2006)

    Article  Google Scholar 

  9. Metz, C., Schaap, M., Klein, S., Neefjes, L., Capuano, E., Schultz, C., van Geuns, R.J., Serruys, P.W., van Walsum, T., Niessen, W.J.: Patient specific 4D coronary models from ECG-gated CTA data for intra-operative dynamic alignment of CTA with X-ray images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 369–376. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics gems IV, pp. 474–485. Academic Press Professional, Inc., San Diego (1994)

    Google Scholar 

  11. Weustink, A.C., Mollet, N.R., Pugliese, F., Meijboom, W.B., Nieman, K., Heijenbrok-Kal, M.H., Flohr, T.G., Neefjes, L.A., Cademartiri, F., de Feyter, P.J., Krestin, G.P.: Optimal electrocardiographic pulsing windows and heart rate: Effect on image quality and radiation exposure at dual-source coronary CT angiography. Radiology 248(3), 792–798 (2008)

    Article  Google Scholar 

  12. Weickert, J.: Anisotropic Diffusion In Image Processing. Teubner-Verlag, Stuttgart (1998)

    MATH  Google Scholar 

  13. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  14. Frangi, A., Niessen, W., Hoogeveen, R., van Walsum, T., Viergever, M.: Model-based quantitation of 3D magnetic resonance angiographic images. IEEE Transactions on Medical Imaging 18(10), 946–956 (1999)

    Article  Google Scholar 

  15. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4(2), 100–107 (1968)

    Article  Google Scholar 

  16. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  17. Friman, O., Hindennach, M., Peitgen, H.O.: Template-based multiple hypotheses tracking of small vessels. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1047–1050 (2008)

    Google Scholar 

  18. Friman, O., Hindennach, M., Khnel, C., Peitgen, H.O.: Multiple hypothesis template tracking of small 3d vessel structures. Medical Image Analysis (December 2009)

    Google Scholar 

  19. Li, H., Yezzi, A.: Vessels as 4d curves: Global minimal 4d paths to extract 3d tubular surfaces. In: Conference on Computer Vision and Pattern Recognition Workshop, CVPRW 2006, p. 82 (June 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, D.P. et al. (2010). Nonrigid Registration and Template Matching for Coronary Motion Modeling from 4D CTA. In: Fischer, B., Dawant, B.M., Lorenz, C. (eds) Biomedical Image Registration. WBIR 2010. Lecture Notes in Computer Science, vol 6204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14366-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14366-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14365-6

  • Online ISBN: 978-3-642-14366-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics