Nothing Special   »   [go: up one dir, main page]

Skip to main content

Nonlinear Elastic Spline Registration: Evaluation with Longitudinal Huntington’s Disease Data

  • Conference paper
Biomedical Image Registration (WBIR 2010)

Abstract

Longitudinal brain image studies quantify the changes happening over time. Jacobian maps, which characterize the volume change, are based on non-rigid registration techniques and do not always appear to be clinically plausible. In particular, extreme values of volume change are not expected to be seen. The Free-Form Deformation (FFD) algorithm suffers from this drawback. Different penalty terms have been proposed in the past. We present in this paper a regularisation of the B-Spline displacements using nonlinear elasticity. Our work links a finite element method with pseudo-forces derived from a similarity measure. The presented method has been evaluated on longitudinal T1-weighted MR images of Huntington’s disease subjects and controls. Multiple time point consistency, the Jacobian map homogeneity and statistical power for group separation have been used. Our new method performs better than the classical FFD, while keeping similar registration accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging 18, 712–721 (1999)

    Article  Google Scholar 

  2. Christensen, G., Rabbitt, R., Miller, M.: Deformable Templates Using Large Deformation Kinematics. IEEE Trans. Med. Imag. 5, 1435–1447 (1996)

    Article  Google Scholar 

  3. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45, 61–72 (2009)

    Article  Google Scholar 

  4. Avants, B.B., Epstein, C., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis 12, 26–41 (2008)

    Article  Google Scholar 

  5. Rohlfing, T., Maurer Jr., C.R., Bluemke, D.A., Jacobs, M.: Volume-Preserving Nonrigid Registration of MR Breast Images Using Free-Form Deformation with an Incompressibility Constraint. IEEE Trans. Med. Imag. 22, 730–741 (2003)

    Article  Google Scholar 

  6. Sdika, M.: A Fast Non Rigid Image Registration with Constraints on the Jacobian using Large Scale Constrained Optimization. IEEE Trans. on Med. Imag. 27, 271–281 (2008)

    Article  Google Scholar 

  7. Broit, C.: Optimal registration of deformed images. Ph.D. dissertation, University of Pennsylvania (1981)

    Google Scholar 

  8. Bajcsy, R., Kovačič, S.: Multiresolution elastic matching. Comput. Vision Graph. Image Process. 46, 1–21 (1989)

    Article  Google Scholar 

  9. Yanovsky, I., Le Guyader, C., Leow, A., Thompson, P., Vese, L.: Nonlinear elastic registration with unbiased regularization in three dimensions. In: Computational Biomechanics for Medicine III, MICCAI 2008 Workshop (2008)

    Google Scholar 

  10. Holzapfel, G.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. John Wiley & Sons, Chichester (2000)

    MATH  Google Scholar 

  11. Bathe, K.-J.: Finite Element Procedures. Prentice Hall, Englewood Cliffs (1996)

    Google Scholar 

  12. Miller, K., Joldes, G., Lance, D., Wittek, A.: Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Communications in Numerical Methods in Engineering 23, 121 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Szekely, G., Brechbühler, C., Hutter, R., Rhomberg, A., Ironmonger, N., Schmid, P.: Modelling of soft tissue simulation for laparscopic surgery simulation. Medical Image Analysis 4, 57–66 (2000)

    Article  Google Scholar 

  14. Taylor, Z., Cheng, M., Ourselin, S.: High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Transactions on Medical Imaging 27, 650–663 (2008)

    Article  Google Scholar 

  15. Studholme, C., Hill, D., Hawkes, D.: An Overlap Invariant Entropy Measure of 3D Medical Image Alignment. Pattern Recognit. 32, 71–86 (1999)

    Article  Google Scholar 

  16. Loeckx, D.: Automated nonrigid intra-patient image registration using B-splines. Ph.D. dissertation, Katholieke Universiteit Leuven (2006)

    Google Scholar 

  17. Smith, S.: Fast robust automated brain extraction. Human Brain Mapping 17, 143–155 (2002)

    Article  Google Scholar 

  18. Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J., Fox, N.C., Ourselin, S.: Fast free-form deformation using graphics processing units. Comput. Meth. Prog. Bio. 98(3), 278–284 (2010)

    Article  Google Scholar 

  19. Ashburner, J.: A fast diffeomorphic image registration algorithm. Neuroimage 38, 95–113 (2007)

    Article  Google Scholar 

  20. Crum, W.R., Rueckert, D., Jenkinson, M., Kennedy, D., Smith, S.M.: A framework for detailed objective comparison of non-rigid registration algorithms in neuroimaging. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 679–686. Springer, Heidelberg (2004)

    Google Scholar 

  21. Hellier, P., Barillot, C., Corouge, I., Gibaud, B., Goualher, G.L., Collins, D.L., Evans, A., Malandain, G., Ayache, N., Christensen, G.E., Johnson, H.J.: Retrospective evaluation of intersubject brain registration. IEEE Trans. Med. Imaging 22, 1120–1130 (2003)

    Article  Google Scholar 

  22. Schnabel, J.A., Tanner, C., Castellano-Smith, A.D., Degenhard, A., Leach, M.O., Hose, D.R., Hill, D.L.G., Hawkes, D.J.: Validation of nonrigid image registration using finite-element methods: application to breast MR images. IEEE Trans. Med. Imaging 22, 238–247 (2003)

    Article  Google Scholar 

  23. Camara, O., Schnabel, J.A., Ridgway, G.R., Crum, W.R., Douiri, A., Scahill, R.I., Hill, D.L.G., Fox, N.C.: Accuracy assessment of global and local atrophy measurement techniques with realistic simulated longitudinal Alzheimer’s disease images. Neuroimage 42, 696–709 (2008)

    Article  Google Scholar 

  24. Christensen, G.E., Johnson, H.J.: Consistent image registration. IEEE Trans. Med. Imaging 20, 568–582 (2001)

    Article  Google Scholar 

  25. Klöppel, S., Stonnington, C.M., Chu, C., Draganski, B., Scahill, R.I., Rohrer, J.D., Fox, N.C., Jack, C.R., Ashburner, J., Frackowiak, R.S.J.: Automatic classification of MR scans in Alzheimer’s disease. Brain 131, 681–689 (2008)

    Article  Google Scholar 

  26. Rueckert, D., Aljabar, P., Heckemann, R., Hajnal, J., Hammers, A.: Diffeomorphic Registration Using B-Splines. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 702–709. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Modat, M. et al. (2010). Nonlinear Elastic Spline Registration: Evaluation with Longitudinal Huntington’s Disease Data. In: Fischer, B., Dawant, B.M., Lorenz, C. (eds) Biomedical Image Registration. WBIR 2010. Lecture Notes in Computer Science, vol 6204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14366-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14366-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14365-6

  • Online ISBN: 978-3-642-14366-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics