Abstract
Longitudinal brain image studies quantify the changes happening over time. Jacobian maps, which characterize the volume change, are based on non-rigid registration techniques and do not always appear to be clinically plausible. In particular, extreme values of volume change are not expected to be seen. The Free-Form Deformation (FFD) algorithm suffers from this drawback. Different penalty terms have been proposed in the past. We present in this paper a regularisation of the B-Spline displacements using nonlinear elasticity. Our work links a finite element method with pseudo-forces derived from a similarity measure. The presented method has been evaluated on longitudinal T1-weighted MR images of Huntington’s disease subjects and controls. Multiple time point consistency, the Jacobian map homogeneity and statistical power for group separation have been used. Our new method performs better than the classical FFD, while keeping similar registration accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging 18, 712–721 (1999)
Christensen, G., Rabbitt, R., Miller, M.: Deformable Templates Using Large Deformation Kinematics. IEEE Trans. Med. Imag. 5, 1435–1447 (1996)
Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45, 61–72 (2009)
Avants, B.B., Epstein, C., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis 12, 26–41 (2008)
Rohlfing, T., Maurer Jr., C.R., Bluemke, D.A., Jacobs, M.: Volume-Preserving Nonrigid Registration of MR Breast Images Using Free-Form Deformation with an Incompressibility Constraint. IEEE Trans. Med. Imag. 22, 730–741 (2003)
Sdika, M.: A Fast Non Rigid Image Registration with Constraints on the Jacobian using Large Scale Constrained Optimization. IEEE Trans. on Med. Imag. 27, 271–281 (2008)
Broit, C.: Optimal registration of deformed images. Ph.D. dissertation, University of Pennsylvania (1981)
Bajcsy, R., Kovačič, S.: Multiresolution elastic matching. Comput. Vision Graph. Image Process. 46, 1–21 (1989)
Yanovsky, I., Le Guyader, C., Leow, A., Thompson, P., Vese, L.: Nonlinear elastic registration with unbiased regularization in three dimensions. In: Computational Biomechanics for Medicine III, MICCAI 2008 Workshop (2008)
Holzapfel, G.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. John Wiley & Sons, Chichester (2000)
Bathe, K.-J.: Finite Element Procedures. Prentice Hall, Englewood Cliffs (1996)
Miller, K., Joldes, G., Lance, D., Wittek, A.: Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Communications in Numerical Methods in Engineering 23, 121 (2007)
Szekely, G., Brechbühler, C., Hutter, R., Rhomberg, A., Ironmonger, N., Schmid, P.: Modelling of soft tissue simulation for laparscopic surgery simulation. Medical Image Analysis 4, 57–66 (2000)
Taylor, Z., Cheng, M., Ourselin, S.: High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Transactions on Medical Imaging 27, 650–663 (2008)
Studholme, C., Hill, D., Hawkes, D.: An Overlap Invariant Entropy Measure of 3D Medical Image Alignment. Pattern Recognit. 32, 71–86 (1999)
Loeckx, D.: Automated nonrigid intra-patient image registration using B-splines. Ph.D. dissertation, Katholieke Universiteit Leuven (2006)
Smith, S.: Fast robust automated brain extraction. Human Brain Mapping 17, 143–155 (2002)
Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J., Fox, N.C., Ourselin, S.: Fast free-form deformation using graphics processing units. Comput. Meth. Prog. Bio. 98(3), 278–284 (2010)
Ashburner, J.: A fast diffeomorphic image registration algorithm. Neuroimage 38, 95–113 (2007)
Crum, W.R., Rueckert, D., Jenkinson, M., Kennedy, D., Smith, S.M.: A framework for detailed objective comparison of non-rigid registration algorithms in neuroimaging. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 679–686. Springer, Heidelberg (2004)
Hellier, P., Barillot, C., Corouge, I., Gibaud, B., Goualher, G.L., Collins, D.L., Evans, A., Malandain, G., Ayache, N., Christensen, G.E., Johnson, H.J.: Retrospective evaluation of intersubject brain registration. IEEE Trans. Med. Imaging 22, 1120–1130 (2003)
Schnabel, J.A., Tanner, C., Castellano-Smith, A.D., Degenhard, A., Leach, M.O., Hose, D.R., Hill, D.L.G., Hawkes, D.J.: Validation of nonrigid image registration using finite-element methods: application to breast MR images. IEEE Trans. Med. Imaging 22, 238–247 (2003)
Camara, O., Schnabel, J.A., Ridgway, G.R., Crum, W.R., Douiri, A., Scahill, R.I., Hill, D.L.G., Fox, N.C.: Accuracy assessment of global and local atrophy measurement techniques with realistic simulated longitudinal Alzheimer’s disease images. Neuroimage 42, 696–709 (2008)
Christensen, G.E., Johnson, H.J.: Consistent image registration. IEEE Trans. Med. Imaging 20, 568–582 (2001)
Klöppel, S., Stonnington, C.M., Chu, C., Draganski, B., Scahill, R.I., Rohrer, J.D., Fox, N.C., Jack, C.R., Ashburner, J., Frackowiak, R.S.J.: Automatic classification of MR scans in Alzheimer’s disease. Brain 131, 681–689 (2008)
Rueckert, D., Aljabar, P., Heckemann, R., Hajnal, J., Hammers, A.: Diffeomorphic Registration Using B-Splines. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 702–709. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Modat, M. et al. (2010). Nonlinear Elastic Spline Registration: Evaluation with Longitudinal Huntington’s Disease Data. In: Fischer, B., Dawant, B.M., Lorenz, C. (eds) Biomedical Image Registration. WBIR 2010. Lecture Notes in Computer Science, vol 6204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14366-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-14366-3_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14365-6
Online ISBN: 978-3-642-14366-3
eBook Packages: Computer ScienceComputer Science (R0)