Abstract
Non-trivial linear straight-line programs over the Galois field of two elements occur frequently in applications such as encryption or high-performance computing. Finding the shortest linear straight-line program for a given set of linear forms is known to be MaxSNP-complete, i.e., there is no ε-approximation for the problem unless P = NP.
This paper presents a non-approximative approach for finding the shortest linear straight-line program. In other words, we show how to search for a circuit of XOR gates with the minimal number of such gates. The approach is based on a reduction of the associated decision problem (“Is there a program of length k?”) to satisfiability of propositional logic. Using modern SAT solvers, optimal solutions to interesting problem instances can be obtained.
Supported by the G.I.F. grant 966-116.6 and the Danish Natural Science Research Council.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks and their applications. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 167–180. Springer, Heidelberg (2009)
Boyar, J., Matthews, P., Peralta, R.: On the shortest linear straight-line program for computing linear forms. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 168–179. Springer, Heidelberg (2008)
Boyar, J., Peralta, R.: A new technique for combinational circuit optimization and a new circuit for the S-Box for AES. In: Patent Application Number 61089998 filed with the U.S. Patent and Trademark Office (2009)
Boyar, J., Peralta, R.: A new combinational logic minimization technique with applications to cryptology. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 178–189. Springer, Heidelberg (2010)
Codish, M., Lagoon, V., Stuckey, P.: Solving partial order constraints for LPO termination. Journal on Satisfiability, Boolean Modeling and Computation (JSAT) 5, 193–215 (2008)
Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. Journal on Satisfiability, Boolean Modelling and Computation (JSAT) 2(1-4), 1–26 (2006)
Fuhs, C., Giesl, J., Middeldorp, A., Thiemann, R., Schneider-Kamp, P., Zankl, H.: SAT solving for termination analysis with polynomial interpretations. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer, Heidelberg (2007)
Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)
Grinchtein, O., Leucker, M., Piterman, N.: Inferring network invariants automatically. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 483–497. Springer, Heidelberg (2006)
Hong, H., Jakuš, D.: Testing positiveness of polynomials. Journal of Automated Reasoning (JAR) 21(1), 23–38 (1998)
Kojevnikov, A., Kulikov, A.S., Yaroslavtsev, G.: Finding efficient circuits using SAT-solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 32–44. Springer, Heidelberg (2009)
Le Berre, D., Parrain, A.: SAT4J, http://www.sat4j.org
Federal Information Processing Standard 197. The advanced encryption standard. Technical report, National Institute of Standards and Technology (2001)
Tseitin, G.: On the complexity of derivation in propositional calculus. Studies in Constructive Mathematics and Mathematical Logic, pp. 115–125 (1968); Reprinted in Automation of Reasoning 2, 466–483 (1983)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fuhs, C., Schneider-Kamp, P. (2010). Synthesizing Shortest Linear Straight-Line Programs over GF(2) Using SAT. In: Strichman, O., Szeider, S. (eds) Theory and Applications of Satisfiability Testing – SAT 2010. SAT 2010. Lecture Notes in Computer Science, vol 6175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14186-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-14186-7_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14185-0
Online ISBN: 978-3-642-14186-7
eBook Packages: Computer ScienceComputer Science (R0)