Abstract
Alternating automata play a key role in the automata-theoretic approach to specification, verification, and synthesis of reactive systems. Many algorithms on alternating automata, and in particular, their nonemptiness test, involve removal of alternation: a translation of the alternating automaton to an equivalent nondeterministic one. For alternating Büchi automata, the best known translation uses the “breakpoint construction” and involves an O(3n) state blow-up. The translation was described by Miyano and Hayashi in 1984, and is widely used since, in both theory and practice. Yet, the best known lower bound is only 2n.
In this paper we develop and present a complete picture of the problem of alternation removal in alternating Büchi automata. In the lower bound front, we show that the breakpoint construction captures the accurate essence of alternation removal, and provide a matching Ω(3n) lower bound. Our lower bound holds already for universal (rather than alternating) automata with an alphabet of a constant size. In the upper-bound front, we point to a class of alternating Büchi automata for which the breakpoint construction can be replaced by a simpler n2n construction. Our class, of ordered alternating Büchi automata, strictly contains the class of very-weak alternating automata, for which an n2n construction is known.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Accellera. Accellera organization inc. (2006), http://www.accellera.org
Daniele, N., Guinchiglia, F., Vardi, M.Y.: Improved automata generation for linear temporal logic. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 249–260. Springer, Heidelberg (1999)
Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer, Heidelberg (2006)
Emerson, E.A., Jutla, C.: Tree automata, μ-calculus and determinacy. In: Proc. 32nd FOCS, pp. 368–377 (1991)
Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–167. Springer, Heidelberg (2000)
Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games, and state space reduction for Büchi automata. Siam J. Comput. 34(5), 1159–1175 (2005)
Filiot, E., Jin, N., Raskin, J.-F.: An antichain algorithm for LTL realizability. In: Bouajjani, A., Maler, O. (eds.) Computer Aided Verification. LNCS, vol. 5643, pp. 263–277. Springer, Heidelberg (2009)
Fritz, C.: Constructing Büchi automata from linear temporal logic using simulation relations for alternating Büchi automata. In: Ibarra, O.H., Dang, Z. (eds.) CIAA 2003. LNCS, vol. 2759, pp. 35–48. Springer, Heidelberg (2003)
Fritz, C., Wilke, T.: State space reductions for alternating Büchi automata: Quotienting by simulation equivalences. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 157–169. Springer, Heidelberg (2002)
Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)
Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods in System Design 19(3), 291–314 (2001)
Kupferman, O., Vardi, M.Y.: Complementation constructions for nondeterministic automata on infinite words. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 206–221. Springer, Heidelberg (2005)
Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time model checking. Journal of the ACM 47(2), 312–360 (2000)
Lichtenstein, O., Pnueli, A.: Checking that finite state concurrent programs satisfy their linear specification. In: Proc. 12th POPL, pp. 97–107 (1985)
Löding, C.: Optimal bounds for transformations of ω-automata. In: Pandu Rangan, C., Raman, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 97–109. Springer, Heidelberg (1999)
Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoretical Computer Science 32, 321–330 (1984)
Morgenstern, A., Schneider, K.: From LTL to symbolically represented deterministic automata. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 279–293. Springer, Heidelberg (2008)
Mostowski, A.W.: Regular expressions for infinite trees and a standard form of automata. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 157–168. Springer, Heidelberg (1985)
Muller, D.E., Saoudi, A., Schupp, P.E.: Alternating automata, the weak monadic theory of the tree and its complexity. In: Kott, L. (ed.) ICALP 1986. LNCS, vol. 226, pp. 275–283. Springer, Heidelberg (1986)
Muller, D.E., Schupp, P.E.: Alternating automata on infinite trees. Theoretical Computer Science 54, 267–276 (1987)
Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)
Vardi, M.Y.: Nontraditional applications of automata theory. In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 575–597. Springer, Heidelberg (1994)
Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computation 115(1), 1–37 (1994)
Yan, Q.: Lower bounds for complementation of ω-automata via the full automata technique. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 589–600. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Boker, U., Kupferman, O., Rosenberg, A. (2010). Alternation Removal in Büchi Automata. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14162-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-14162-1_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14161-4
Online ISBN: 978-3-642-14162-1
eBook Packages: Computer ScienceComputer Science (R0)