Nothing Special   »   [go: up one dir, main page]

Skip to main content

Choosing, Agreeing, and Eliminating in Communication Complexity

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6198))

Included in the following conference series:

Abstract

We consider several questions inspired by the direct-sum problem in (two-party) communication complexity. In all questions, there are k fixed Boolean functions f 1,...,f k and Alice and Bob have k inputs x 1,...,x k and y 1,...,y k , respectively. In the eliminate problem, Alice and Bob should output a vector σ 1,...,σ k such that f i (x i ) ≠ σ i for at least one i (i.e., their goal is to eliminate one of the 2k output vectors); in choose, Alice and Bob should return (i,f i (x i ,y i )) and in agree they should return f i (x i ,y i ), for some i. The question, in each of the three cases, is whether one can do better than solving one (say, the first) instance. We study these three problems and prove various positive and negative results.

The first author is supported by ISF grant 938/09. The second author is partially supported by the Frankel Center for Computer Science. The third and fourth authors are supported by ISF grant 1310/06.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, M., Arvind, V.: Polynomial time truth-table reductions to P-selective sets. In: Structure in Complexity Theory Conference, pp. 24–30 (1994)

    Google Scholar 

  2. Ambainis, A., Buhrman, H., Gasarch, W., Kalyanasundaramd, B., Torenvliete, L.: The communication complexity of enumeration, elimination, and selection. JCSS 63(2), 148–185 (2001)

    MATH  Google Scholar 

  3. Amihood, A., Beigel, R., Gasarch, W.I.: Some connections between bounded query classes and non-uniform complexity. ECCC 7(024) (2000)

    Google Scholar 

  4. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics approach to data stream and communication complexity. In: Proceedings of the 43rd Symposium on Foundations of Computer Science, pp. 209–218 (2002)

    Google Scholar 

  5. Beigel, R., Gasarch, W.I., Gill, J., Owings, J.C.: Terse, superterse, and verbose sets. Inf. Comput. 103(1), 68–85 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beigel, R., Gasarch, W.I., Kummer, M., Martin, G., McNicholl, T., Stephan, F.: The complexity of Odd\(^{A}_{\mbox{n}}\). J. Symb. Log. 65(1), 1–18 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Beigel, R., Hirst, T.: One help-bit doesn’t help. In: Proceedings of the thirtieth annual ACM symposium on Theory of computing, pp. 124–130 (1998)

    Google Scholar 

  8. Beigel, R., Kummer, M., Stephan, F.: Approximable sets. Information and Computation 120, 12–23 (1994)

    MathSciNet  Google Scholar 

  9. Cai, J., Hemachandra, L.A.: Enumerative counting is hard. Inf. Comput. 82(1), 34–44 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Feder, T., Kushilevitz, E., Naor, M., Nisan, N.: Amortized communication complexity. SIAM Journal on Computing 24(4), 736–750 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Galbiati, G., Fischer, M.J.: On the complexity of 2-output Boolean networks. Theor. Comput. Sci. 16, 177–185 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gasarch, W., Martin, G.: Bounded queries in recursion theory (1998)

    Google Scholar 

  13. Hemaspaandra, L.A., Torenvliet, L.: Theory of Semi-Feasible Algorithms (2003)

    Google Scholar 

  14. Jain, R., Klauck, H., Santha, M.: Optimal direct sum results for deterministic and randomized decision tree complexity. Technical Report 1004.0105v1, arxiv.org (2010), http://arxiv.org/abs/1004.0105v1

  15. Jockusch, C.: Semirecursive sets and positive reducibility. Transactions of the American Mathematical Society 131(2), 420–436 (1968)

    MATH  MathSciNet  Google Scholar 

  16. Karchmer, M., Kushilevitz, E., Nisan, N.: Fractional covers and communication complexity. SIAM J. on Discrete Mathematics 8(1), 76–92 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Karchmer, M., Raz, R., Wigderson, A.: On proving superlogarithmic depth lower bounds via the direct sum in communication complexity. In: 6th IEEE Structure in Complexity Theory, pp. 299–304 (1991)

    Google Scholar 

  18. Karchmer, M., Wigderson, A.: Monotone circuits for connectivity require superlogarithmic depth. SIAM J. on Discrete Mathematics 3(2), 255–265 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ko, K.: On self-reducibility and weak P-selectivity. JCSS 26(2), 209–221 (1983)

    MATH  Google Scholar 

  20. Kummer, M.: A proof of Beigel’s cardinality conjecture. J. Symb. Log. 57(2), 677–681 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kushilevitz, E., Nisan, N.: Communication Complexity (1997)

    Google Scholar 

  22. Nisan, N., Rudich, S., Saks, M.: Products and help bits in decision trees. SIAM J. Comput. 28(3), 1035–1050 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Paul, W.J.: Realizing Boolean functions on disjoint sets of variables. Technical report, Cornell University, Ithaca, NY, USA (1974)

    Google Scholar 

  24. Selman, A.L.: P-selective sets, tally languages, and the behavior of polynomial time reducibilities on NP. In: 6th ICALP, pp. 546–555. Springer, Heidelberg (1979)

    Google Scholar 

  25. Selman, A.L.: Analogues of semicursive sets and effective reducibilities to the study of NP complexity. Information and Control 52(1), 36–51 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  26. Selman, A.L.: Reductions on NP and P-selective sets. Theor. Comput. Sci. 19, 287–304 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  27. Shaltiel, R.: Towards proving strong direct product theorems. In: Proc. of the 16th IEEE Conf. on Computational Complexity, pp. 107–119 (2001)

    Google Scholar 

  28. Sivakumar, D.: On membership comparable sets. J. Comput. Syst. Sci. 59(2), 270–280 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. Uhlig, D.: On the synthesis of self-correcting schemes from functional elements with a small number of reliable elements. Mat. Zametki 15, 937–944 (1974)

    MathSciNet  Google Scholar 

  30. Yao, A.C.: Some complexity questions related to distributed computing. In: Proc. of the 11th ACM Symp. on the Theory of Computing, pp. 209–213 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beimel, A., Ben Daniel, S., Kushilevitz, E., Weinreb, E. (2010). Choosing, Agreeing, and Eliminating in Communication Complexity. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14165-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14165-2_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14164-5

  • Online ISBN: 978-3-642-14165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics