Nothing Special   »   [go: up one dir, main page]

Skip to main content

Formal Proof of a Wave Equation Resolution Scheme: The Method Error

  • Conference paper
Interactive Theorem Proving (ITP 2010)

Abstract

Popular finite difference numerical schemes for the resolution of the one-dimensional acoustic wave equation are well-known to be convergent. We present a comprehensive formalization of the simplest scheme and formally prove its convergence in Coq. The main difficulties lie in the proper definition of asymptotic behaviors and the implicit way they are handled in the mathematical pen-and-paper proofs. To our knowledge, this is the first time this kind of mathematical proof is machine-checked.

This research was supported by the ANR projects CerPAN (ANR-05-BLAN-0281-04) and F\(\oint\)ST (ANR-08-BLAN-0246-01).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thomas, J.W.: Numerical Partial Differential Equations: Finite Difference Methods. Texts in Applied Mathematics, vol. 22. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  2. Zwillinger, D.: Handbook of Differential Equations. Academic Press, London (1998)

    MATH  Google Scholar 

  3. Dutertre, B.: Elements of Mathematical Analysis in PVS. In: von Wright, J., Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 141–156. Springer, Heidelberg (1996)

    Google Scholar 

  4. Harrison, J.: Theorem Proving with the Real Numbers. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  5. Fleuriot, J.D.: On the Mechanization of Real Analysis in Isabelle/HOL. In: Aagaard, M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 145–161. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Mayero, M.: Formalisation et automatisation de preuves en analyses réelle et numérique. PhD thesis, Université Paris VI (2001)

    Google Scholar 

  7. Gamboa, R., Kaufmann, M.: Nonstandard Analysis in ACL2. Journal of Automated Reasoning 27(4), 323–351 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Geuvers, H., Niqui, M.: Constructive Reals in Coq: Axioms and Categoricity. In: Callaghan, P., Luo, Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 79–95. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Cruz-Filipe, L.: A Constructive Formalization of the Fundamental Theorem of Calculus. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 108–126. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Mayero, M.: Using Theorem Proving for Numerical Analysis (Correctness Proof of an Automatic Differentiation Algorithm). In: Carreño, V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, pp. 246–262. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Harrison, J.: A HOL Theory of Euclidean Space. In: Hurd, J., Melham, T.F. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005)

    Google Scholar 

  12. Avigad, J., Donnelly, K.: A Decision Procedure for Linear ”Big O” Equations. J. Autom. Reason. 38(4), 353–373 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bécache, E.: Étude de schémas numériques pour la résolution de l’équation des ondes. Master Modélisation et simulation, Cours ENSTA (2009), http://www-rocq.inria.fr/~becache/COURS-ONDES/Poly-num-0209.pdf

  14. Achenbach, J.D.: Wave Propagation in Elastic Solids. North Holland, Amsterdam (1973)

    MATH  Google Scholar 

  15. Brekhovskikh, L.M., Goncharov, V.: Mechanics of Continua and Wave Dynamics. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  16. Newton, I.: Axiomata, sive Leges Motus. In: Philosophiae Naturalis Principia Mathematica, London, vol. 1 (1687)

    Google Scholar 

  17. le Rond D’Alembert, J.: Recherches sur la courbe que forme une corde tendue mise en vibrations. In: Histoire de l’Académie Royale des Sciences et Belles Lettres (Année 1747), vol. 3, pp. 214–249. Haude et Spener, Berlin (1749)

    Google Scholar 

  18. John, F.: Partial Differential Equations. Springer, Heidelberg (1986)

    Google Scholar 

  19. Courant, R., Friedrichs, K., Lewy, H.: On the partial difference equations of mathematical physics. IBM Journal of Research and Development 11(2), 215–234 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer, Heidelberg (2004)

    Google Scholar 

  21. Boldo, S.: Floats & Ropes: a case study for formal numerical program verification. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 91–102. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Letouzey, P.: A New Extraction for Coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 200–219. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Bertot, Y., Gonthier, G., Ould Biha, S., Pasca, I.: Canonical big operators. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 86–101. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boldo, S., Clément, F., Filliâtre, JC., Mayero, M., Melquiond, G., Weis, P. (2010). Formal Proof of a Wave Equation Resolution Scheme: The Method Error. In: Kaufmann, M., Paulson, L.C. (eds) Interactive Theorem Proving. ITP 2010. Lecture Notes in Computer Science, vol 6172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14052-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14052-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14051-8

  • Online ISBN: 978-3-642-14052-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics