Nothing Special   »   [go: up one dir, main page]

Skip to main content

Discovering Pairwise Compatibility Graphs

  • Conference paper
Computing and Combinatorics (COCOON 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6196))

Included in the following conference series:

Abstract

Let T be an edge weighted tree, let d T (u,v) be the sum of the weights of the edges on the path from u to v in T, and let d min and d max be two non-negative real numbers such that d min  ≤ d max . Then a pairwise compatibility graph of T for d min and d max is a graph G = (V,E), where each vertex u′ ∈ V corresponds to a leaf u of T and there is an edge (u′, v′) ∈ E if and only if d min  ≤ d T (u, v) ≤ d max . A graph G is called a pairwise compatibility graph (PCG) if there exists an edge weighted tree T and two non-negative real numbers d min and d max such that G is a pairwise compatibility graph of T for d min and d max . Kearney et al. conjectured that every graph is a PCG [3]. In this paper, we refute the conjecture by showing that not all graphs are PCGs. We also show that the well known tree power graphs and some of their extensions are PCGs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  2. Jones, N.C., Pevzner, P.A.: An Introduction to Bioinformatics Algorithms. The MIT Press, Cambridge (2004)

    Google Scholar 

  3. Kearney, P., Munro, I., Phillips, D.: Efficient Generation of Uniform Samples from Phylogenetic Trees. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 177–189. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Lesk, A.M.: Introduction to Bioinformatics. Oxford University Press, Oxford (2002)

    Google Scholar 

  5. Lin, G.H., Jiang, T., Kearney, P.E.: Phylogenetic k-root and steiner k-root. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 539–551. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Phillips, D.: Uniform Sampling From Phylogenetics Trees. Master’s thesis, University of Waterloo (August 2002)

    Google Scholar 

  7. Yanhaona, M.N., Hossain, K.S.M.T., Rahman, M.S.: Pairwise compatibility graphs. Journal of Applied Mathematics and Computing 30, 479–503 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yanhaona, M.N., Bayzid, M.S., Rahman, M.S. (2010). Discovering Pairwise Compatibility Graphs. In: Thai, M.T., Sahni, S. (eds) Computing and Combinatorics. COCOON 2010. Lecture Notes in Computer Science, vol 6196. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14031-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14031-0_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14030-3

  • Online ISBN: 978-3-642-14031-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics