Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Self-stabilizing 3-Approximation for the Maximum Leaf Spanning Tree Problem in Arbitrary Networks

  • Conference paper
Computing and Combinatorics (COCOON 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6196))

Included in the following conference series:

  • 988 Accesses

Abstract

The maximum leaf spanning tree (MLST) is a good candidate for constructing a virtual backbone in self-organized multihop wireless networks, but is practically intractable (NP-complete). Self-stabilization is a general technique that permits to recover from catastrophic transient failures in self-organized networks without human intervention. We propose a fully distributed self-stabilizing approximation algorithm for the MLST problem on arbitrary topology networks. Our algorithm is the first self-stabilizing protocol that is specifically designed for the construction of an MLST. It improves other previous self-stabilizing solutions both for generality (arbitrary topology graphs vs. unit disk graphs or generalized disk graphs, respectively) and for approximation ratio, as it guarantees the number of its leaves is at least 1/3 of the maximum one. The time complexity of our algorithm is O(n 2) rounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Solis-Oba, R.: 2-approximation algorithm for finding a spanning tree with maximum number of leaves. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 441–452. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Tixeuil, S.: Self-stabilizing Algorithms. Chapman & Hall/CRC Applied Algorithms and Data Structures. In: Algorithms and Theory of Computation Handbook, 2nd edn. Taylor & Francis, Abington (2009)

    Google Scholar 

  3. Galbiati, G., Maffioli, F., Morzenti, A.: A short note on the approximability of the maximum leaves spanning tree problem. Information Processing Letters 52(1), 45–49 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Lu, H.I., Ravi, R.: Approximating maximum leaf spanning trees in almost linear time. Journal of algorithms 29, 132–141 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blin, L., Potop-Butucaru, M., Rovedakis, S.: Self-stabilizing minimum-degree spanning tree within one from the optimal degree. In: Proceedings of the 23th IEEE International Parallel and Distributed Processing Symposium (2009)

    Google Scholar 

  6. Blin, L., Potop-Butucaru, M.G., Rovedakis, S., Tixeuil, S.: A new self-stabilizing minimum spanning tree construction with loop-free property. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 407–422. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Butelle, F., Lavault, C., Bui, M.: A uniform self-stabilizing minimum diameter tree algorithm. In: Helary, J.-M., Raynal, M. (eds.) WDAG 1995. LNCS, vol. 972, pp. 257–272. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  8. Guha, S., Khuller, S.: Approximation Algorithms for Connected Dominating Sets. Algorithmica 20, 347–387 (1998)

    Article  MathSciNet  Google Scholar 

  9. Kamei, S., Kakugawa, H.: A self-stabilizing distributed approximation algorithm for the minimum connected dominating set. In: Proceedings of the 9th IPDPS Workshop on Advances in Parallel and Distributed Computational Models, p. 224 (2007)

    Google Scholar 

  10. Raei, H., Tabibzadeh, M., Ahmadipoor, B., Saei, S.: A self-stabilizing distributed algorithm for minimum connected dominating sets in wireless sensor networks with different transmission ranges. In: Proceedings of the 11th International Conference on Advanced Communication Technology, pp. 526–530 (2009)

    Google Scholar 

  11. Dolev, S.: Self-Stabilization. The MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  12. Datta, A.K., Larmore, L.L., Vemula, P.: Self-stabilizing leader election in optimal space. In: Kulkarni, S., Schiper, A. (eds.) SSS 2008. LNCS, vol. 5340, pp. 109–123. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kamei, S., Kakugawa, H., Devismes, S., Tixeuil, S. (2010). A Self-stabilizing 3-Approximation for the Maximum Leaf Spanning Tree Problem in Arbitrary Networks. In: Thai, M.T., Sahni, S. (eds) Computing and Combinatorics. COCOON 2010. Lecture Notes in Computer Science, vol 6196. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14031-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14031-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14030-3

  • Online ISBN: 978-3-642-14031-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics