Abstract
We build wavelet-based adaptive numerical methods for the simulation of advection dominated flows that develop multiple spatial scales, with an emphasis on fluid mechanics problems. Wavelet based adaptivity is inherently sequential and in this work we demonstrate that these numerical methods can be implemented in software that is capable of harnessing the capabilities of multi-core architectures while maintaining their computational efficiency. Recent designs in frameworks for multi-core software development allow us to rethink parallelism as task-based, where parallel tasks are specified and automatically mapped into physical threads. This way of exposing parallelism enables the parallelization of algorithms that were considered inherently sequential, such as wavelet-based adaptive simulations. In this paper we present a framework that combines wavelet-based adaptivity with the task-based parallelism. We demonstrate good scaling performance obtained by simulating diverse physical systems on different multi-core and SMP architectures using up to 16 cores.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Ishihara, T., Gotoh, T., Kaneda, Y.: Study of High–Reynolds Number Isotropic Turbulence by Direct Numerical Simulation. Annual Review of Fluid Mechanics 41(1) (2009)
Yokokawa, M., Uno, A., Ishihara, T., Kaneda, Y.: 16.4–Tflops DNS of turbulence by Fourier spectral method on the Earth Simulator. In: Supercomputing 2002: Proceedings of the 2002 ACM/IEEE conference on Supercomputing, pp. 1–17. IEEE Computer Society Press, Los Alamitos (2002)
Chatelain, P., Curioni, A., Bergdorf, M., Rossinelli, D., Andreoni, W., Koumoutsakos, P.: Billion Vortex Particle direct numerical simulation of aircraft wakes. Comput. Methods Appl. Mech. Engrg. 197(13-16), 1296–1304 (2008)
Jiménez, J.: Computing high-Reynolds-number turbulence: will simulations ever replace experiments? Journal of Turbulence 4 (June 12, 2003); 5th International Symposium on Engineering Turbulence Modelling and Measurements, Mallorca, Spain, September 16-18 (2002)
Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53(3), 484–512 (1984)
Harten, A.: Adaptive Multiresolution Schemes For Shock Computations. Journal of Computational Physics 115(2), 319–338 (1994)
Kevlahan, N.K.R., Vasilyev, O.V.: An adaptive wavelet collocation method for fluid-structure interaction at high reynolds numbers. SIAM Journal on Scientific Computing 26(6), 1894–1915 (2005)
Liu, Q., Vasilyev, O.: A Brinkman penalization method for compressible flows in complex geometries. Journal of Computational Physics 227(2), 946–966 (2007)
Bergdorf, M., Koumoutsakos, P.: A Lagrangian particle-wavelet method. Multiscale Modeling and Simulation 5(3), 980–995 (2006)
Hopf, M., Ertl, T.: Hardware accelerated wavelet transformations. In: Proceedings of EG/IEEE TCVG Symposium on Visualization VisSym 2000, pp. 93–103 (2000)
Yang, L.H., Misra, M.: Coarse-grained parallel algorithms for multi-dimensional wavelet transforms. Journal of Supercomputing 12(1-2), 99–118 (1998)
Bader, D.A., Agarwal, V., Kang, S.: Computing discrete transforms on the cell broadband engine. Parallel Computing 35(3), 119–137 (2009)
Tenllado, C., Setoain, J., Prieto, M., Pinuel, L., Tirado, F.: Parallel implementation of the 2d discrete wavelet transform on graphics processing units: Filter bank versus lifting. IEEE Transaction on Parallel and Distributed Systems 19(3), 299–310 (2008)
Cohen, A., Daubechies, I., Feauveau, J.: Biorthogonal Bases of Compactly Supported Wavelets. Communication on Pure and Applied Mathematics 45(5), 485–560 (1992)
Donoho, D.: Interpolating wavelet transforms. Technical report, Preprint Department of Statistics, Stanford University (1992)
Ferm, L., Lötstedt, P.: Space–Time Adaptive Solution of First Order PDEs. J. Sci. Comput. 26(1), 83–110 (2006)
Jansson, J., Logg, A.: Algorithms and data structures for multi-adaptive time-stepping. ACM Transactions on Mathematical Software 35(3), 17 (2008)
Liandrat, J., Tchamitchian, P.: Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation. Technical Report 90-83, 1CASE, NASA Contractor Report 18748880 (December 1990)
Contreras, G., Martonosi, M.: Characterizing and improving the performance of Intel threading building blocks. In: 2008 IEEE International Symposium on Workload Characterization (IISWC), Piscataway, NJ, USA, pp. 57–66. IEEE, Los Alamitos (2008)
Robison, A., Voss, M., Kukanov, A.: Optimization via reflection on work stealing in TBB. In: 2008 IEEE International Symposium on Parallel & Distributed Processing, New York, NY, USA, vols. 1-8, pp. 598–605. IEEE, Los Alamitos (2008)
Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order accurate essentially non-oscillatory schemes.3 (Reprinted from Journal of Computational Physics, vol 71, p. 231 (1987). Journal of Computational Physics 131(1), 3–47 (Feburary 1997)
Wendroff, B.: Approximate Riemann solvers, Godunov schemes and contact discontinuities. In: Toro, E.F. (ed.) Godunov Methods: Theory and Applications, 233 Spring St, New York, NY 10013 USA, London Math Soc., pp. 1023–1056. Kluwer Academic/Plenum Publ. (2001)
Sussman, M., Smereka, P., Osher, S.: A Level Set Approach for Computing Solutions To Incompressible 2-Phase Flow. Journal of Computational Physics 114(1), 146–159 (1994)
Koumoutsakos, P.: Multiscale flow simulations using particles. Annual Review Of Fluid Mechanics 37, 457–487 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rossinelli, D., Bergdorf, M., Hejazialhosseini, B., Koumoutsakos, P. (2009). Wavelet-Based Adaptive Solvers on Multi-core Architectures for the Simulation of Complex Systems. In: Sips, H., Epema, D., Lin, HX. (eds) Euro-Par 2009 Parallel Processing. Euro-Par 2009. Lecture Notes in Computer Science, vol 5704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03869-3_68
Download citation
DOI: https://doi.org/10.1007/978-3-642-03869-3_68
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03868-6
Online ISBN: 978-3-642-03869-3
eBook Packages: Computer ScienceComputer Science (R0)