Abstract
This paper presents a local search method for the Bayesian optimization algorithm (BOA) based on the concepts of substructural neighborhoods and loopy belief propagation. The probabilistic model of BOA, which automatically identifies important problem substructures, is used to define the topology of the neighborhoods explored in local search. On the other hand, belief propagation in graphical models is employed to find the most suitable configuration of conflicting substructures. The results show that performing loopy substructural local search (SLS) in BOA can dramatically reduce the number of generations necessary to converge to optimal solutions and thus provides substantial speedups.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: The Bayesian Optimization Algorithm. In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference GECCO 1999, pp. 525–532. Morgan Kaufmann, San Francisco (1999)
Pelikan, M.: Hierarchical Bayesian Optimization Algorithm: Toward a New Generation of Evolutionary Algorithms. Springer, Heidelberg (2005)
Larrañaga, P., Lozano, J.A. (eds.): Estimation of distribution algorithms: a new tool for Evolutionary Computation. Kluwer Academic Publishers, Boston (2002)
Pelikan, M., Goldberg, D.E., Lobo, F.: A survey of optimization by building and using probabilistic models. Computational Optimization and Applications 21(1), 5–20 (2002)
Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Technical Report C3P 826, Caltech Concurrent Computation Program, California Institute of Technology, Pasadena, CA (1989)
Hart, W.E.: Adaptive global optimization with local search. PhD thesis, University of California, San Diego, CA (1994)
Sastry, K., Goldberg, D.E.: Let’s get ready to rumble: Crossover versus mutation head to head. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 126–137. Springer, Heidelberg (2004)
Lima, C.F., Pelikan, M., Sastry, K., Butz, M., Goldberg, D.E., Lobo, F.G.: Substructural neighborhoods for local search in the bayesian optimization algorithm. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 232–241. Springer, Heidelberg (2006)
Pearl, J.: Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann, San Mateo (1988)
Pelikan, M., Sastry, K.: Fitness inheritance in the bayesian optimization algorithm. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 48–59. Springer, Heidelberg (2004)
Lima, C.F.: Substructural Local Search in Discrete Estimation of Distribution Algorithms. PhD thesis, University of Algarve, Faro, Portugal (2009)
Kschischang, F., Frey, B., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory 47(2), 498–519 (2001)
Mooij, J.M.: Understanding and Improving Belief Propagation. PhD thesis, Radboud University Nijmegen, Nijmegen, Netherlands (2008)
Kindermann, R., Snell, J.L.: Markov Random Fields and Their Applications. American Mathematics Society, Providence (1980)
Mendiburu, A., Santana, R., Lozano, J.A., Bengoetxea, E.: A parallel framework for loopy belief propagation. In: GECCO 2007: Proceedings of the 2007 GECCO conference companion on Genetic and evolutionary computation, pp. 2843–2850. ACM, New York (2007)
Braunstein, A., Mezard, M., Zecchina, R.: Survey propagation: An algorithm for satisfiability. Random Structures and Algorithms 27(2), 201–226 (2005)
Feige, U., Mossel, E., Vilenchik, D.: Complete convergence of message passing algorithms for some satisfiability problems. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 339–350. Springer, Heidelberg (2006)
Bayati, M., Shah, D., Sharma, M.: Max-product for maximum weight matching: Convergence, correctness, and LP duality. IEEE Transactions on Information Theory 54(3), 1241–1251 (2008)
Mendiburu, A., Santana, R., Lozano, J.A.: Introducing belief propagation in estimation of distribution algorithms: A parallel approach. Technical Report EHU-KAT-IK-11-07, Department of Computer Science and Artificial Intelligence, University of the Basque Country (2007)
Etxeberria, R., Larrañaga, P.: Global optimization using Bayesian networks. In: Rodriguez, A.A.O., et al. (eds.) Second Symposium on Artificial Intelligence (CIMAF 1999), Habana, Cuba, pp. 332–339 (1999)
Henrion, M.: Propagation of uncertainty in Bayesian networks by logic sampling. In: Lemmer, J.F., Kanal, L.N. (eds.) Uncertainty in Artificial Intelligence, pp. 149–163. Elsevier, Amsterdam (1988)
Elidan, G., Mcgraw, I., Koller, D.: Residual belief propagation: Informed scheduling for asynchronous message passing. In: Proceedings of the Twenty-second Conference on Uncertainty in AI, UAI (2006)
Yu, T.L., Sastry, K., Goldberg, D.E., Pelikan, M.: Population sizing for entropy-based model building in genetic algorithms. In: Thierens, D., et al. (eds.) Proceedings of the ACM SIGEVO Genetic and Evolutionary Computation Conference (GECCO 2007), pp. 601–608. ACM Press, New York (2007)
Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. Foundations of Genetic Algorithms 2, 93–108 (1993)
Goldberg, D.E.: The Design of Innovation - Lessons from and for Competent Genetic Algorithms. Kluwer Academic Publishers, Norwell (2002)
Thierens, D., Goldberg, D.E.: Mixing in genetic algorithms. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, CA, pp. 38–45. Morgan Kaufmann, San Francisco (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lima, C.F., Pelikan, M., Lobo, F.G., Goldberg, D.E. (2009). Loopy Substructural Local Search for the Bayesian Optimization Algorithm. In: Stützle, T., Birattari, M., Hoos, H.H. (eds) Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics. SLS 2009. Lecture Notes in Computer Science, vol 5752. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03751-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-03751-1_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03750-4
Online ISBN: 978-3-642-03751-1
eBook Packages: Computer ScienceComputer Science (R0)