Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5752))

Abstract

This paper presents a local search method for the Bayesian optimization algorithm (BOA) based on the concepts of substructural neighborhoods and loopy belief propagation. The probabilistic model of BOA, which automatically identifies important problem substructures, is used to define the topology of the neighborhoods explored in local search. On the other hand, belief propagation in graphical models is employed to find the most suitable configuration of conflicting substructures. The results show that performing loopy substructural local search (SLS) in BOA can dramatically reduce the number of generations necessary to converge to optimal solutions and thus provides substantial speedups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: The Bayesian Optimization Algorithm. In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference GECCO 1999, pp. 525–532. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  2. Pelikan, M.: Hierarchical Bayesian Optimization Algorithm: Toward a New Generation of Evolutionary Algorithms. Springer, Heidelberg (2005)

    Book  MATH  Google Scholar 

  3. Larrañaga, P., Lozano, J.A. (eds.): Estimation of distribution algorithms: a new tool for Evolutionary Computation. Kluwer Academic Publishers, Boston (2002)

    MATH  Google Scholar 

  4. Pelikan, M., Goldberg, D.E., Lobo, F.: A survey of optimization by building and using probabilistic models. Computational Optimization and Applications 21(1), 5–20 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Technical Report C3P 826, Caltech Concurrent Computation Program, California Institute of Technology, Pasadena, CA (1989)

    Google Scholar 

  6. Hart, W.E.: Adaptive global optimization with local search. PhD thesis, University of California, San Diego, CA (1994)

    Google Scholar 

  7. Sastry, K., Goldberg, D.E.: Let’s get ready to rumble: Crossover versus mutation head to head. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 126–137. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Lima, C.F., Pelikan, M., Sastry, K., Butz, M., Goldberg, D.E., Lobo, F.G.: Substructural neighborhoods for local search in the bayesian optimization algorithm. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 232–241. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Pearl, J.: Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann, San Mateo (1988)

    MATH  Google Scholar 

  10. Pelikan, M., Sastry, K.: Fitness inheritance in the bayesian optimization algorithm. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 48–59. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Lima, C.F.: Substructural Local Search in Discrete Estimation of Distribution Algorithms. PhD thesis, University of Algarve, Faro, Portugal (2009)

    Google Scholar 

  12. Kschischang, F., Frey, B., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory 47(2), 498–519 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mooij, J.M.: Understanding and Improving Belief Propagation. PhD thesis, Radboud University Nijmegen, Nijmegen, Netherlands (2008)

    Google Scholar 

  14. Kindermann, R., Snell, J.L.: Markov Random Fields and Their Applications. American Mathematics Society, Providence (1980)

    Book  MATH  Google Scholar 

  15. Mendiburu, A., Santana, R., Lozano, J.A., Bengoetxea, E.: A parallel framework for loopy belief propagation. In: GECCO 2007: Proceedings of the 2007 GECCO conference companion on Genetic and evolutionary computation, pp. 2843–2850. ACM, New York (2007)

    Chapter  Google Scholar 

  16. Braunstein, A., Mezard, M., Zecchina, R.: Survey propagation: An algorithm for satisfiability. Random Structures and Algorithms 27(2), 201–226 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feige, U., Mossel, E., Vilenchik, D.: Complete convergence of message passing algorithms for some satisfiability problems. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 339–350. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Bayati, M., Shah, D., Sharma, M.: Max-product for maximum weight matching: Convergence, correctness, and LP duality. IEEE Transactions on Information Theory 54(3), 1241–1251 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mendiburu, A., Santana, R., Lozano, J.A.: Introducing belief propagation in estimation of distribution algorithms: A parallel approach. Technical Report EHU-KAT-IK-11-07, Department of Computer Science and Artificial Intelligence, University of the Basque Country (2007)

    Google Scholar 

  20. Etxeberria, R., Larrañaga, P.: Global optimization using Bayesian networks. In: Rodriguez, A.A.O., et al. (eds.) Second Symposium on Artificial Intelligence (CIMAF 1999), Habana, Cuba, pp. 332–339 (1999)

    Google Scholar 

  21. Henrion, M.: Propagation of uncertainty in Bayesian networks by logic sampling. In: Lemmer, J.F., Kanal, L.N. (eds.) Uncertainty in Artificial Intelligence, pp. 149–163. Elsevier, Amsterdam (1988)

    Chapter  Google Scholar 

  22. Elidan, G., Mcgraw, I., Koller, D.: Residual belief propagation: Informed scheduling for asynchronous message passing. In: Proceedings of the Twenty-second Conference on Uncertainty in AI, UAI (2006)

    Google Scholar 

  23. Yu, T.L., Sastry, K., Goldberg, D.E., Pelikan, M.: Population sizing for entropy-based model building in genetic algorithms. In: Thierens, D., et al. (eds.) Proceedings of the ACM SIGEVO Genetic and Evolutionary Computation Conference (GECCO 2007), pp. 601–608. ACM Press, New York (2007)

    Google Scholar 

  24. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. Foundations of Genetic Algorithms 2, 93–108 (1993)

    Article  Google Scholar 

  25. Goldberg, D.E.: The Design of Innovation - Lessons from and for Competent Genetic Algorithms. Kluwer Academic Publishers, Norwell (2002)

    MATH  Google Scholar 

  26. Thierens, D., Goldberg, D.E.: Mixing in genetic algorithms. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, CA, pp. 38–45. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lima, C.F., Pelikan, M., Lobo, F.G., Goldberg, D.E. (2009). Loopy Substructural Local Search for the Bayesian Optimization Algorithm. In: Stützle, T., Birattari, M., Hoos, H.H. (eds) Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics. SLS 2009. Lecture Notes in Computer Science, vol 5752. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03751-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03751-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03750-4

  • Online ISBN: 978-3-642-03751-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics