Abstract
Completely iterative algebras (cias) are those algebras in which recursive equations have unique solutions. In this paper we study complete iterativity for algebras with computational effects (described by a monad). First, we prove that for every analytic endofunctor on Set there exists a canonical distributive law over any commutative monad M, hence a lifting of that endofunctor to the Kleisli category of M. Then, for an arbitrary distributive law λ of an endofunctor H on Set over a monad M we introduce λ-cias. The cias for the corresponding lifting of H (called Kleisli-cias) form a full subcategory of the category of λ-cias. For various monads of interest we prove that free Kleisli-cias coincide with free λ-cias, and these free algebras are given by free algebras for H. Finally, for three concrete examples of monads we prove that Kleisli-cias and λ-cias coincide and give a characterisation of those algebras.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adámek, J., Milius, S., Velebil, J.: Iterative algebras at work. Math. Structures Comput. Sci. 16, 1085–1131 (2006)
America, P., Rutten, J.J.M.M.: Solving reflexive domain equations in a category of complete metric spaces. J. Comput. System Sci. 39(3), 343–375 (1989)
Elgot, C.: Monadic computation and iterative algebraic theories. In: Rose, H.E., Shepherdson, J.C. (eds.) Logic Colloquium 1973, pp. 175–230. North-Holland, Amsterdam (1975)
Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Log. Methods Comput. Sci. 3(4:11), 1–36 (2007)
Joyal, A.: Une théorie combinatoire des séries formelles. Adv. Math. 42, 1–82 (1981)
Joyal, A.: Foncteurs analytiques et espèces de structures. In: Labelle, G., Leroux, P. (eds.) Combinatoire énumérative. Lecture Notes in Math., vol. 1234, pp. 126–159 (1986)
Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993)
Kock, A.: Monads on symmetric monoidal closed categories. Arch. Math. (Basel) 21, 1–10 (1970)
Kock, A.: Strong functors and monoidal monads. Arch. Math. (Basel) 23, 113–120 (1972)
Lambek, J.: A fixpoint theorem for complete categories. Math. Z. 103(2), 151–161 (1968)
Milius, S.: Completely iterative algebras and completely iterative monads. Inform. and Comput. 196, 1–41 (2005)
Milius, S., Moss, L.S.: The category-theoretic solution of recursive program schemes. Theoret. Comput. Sci. 366, 3–59 (2006)
Milius, S., Palm, T., Schwencke, D.: Complete iterativity for algebras with effects, http://www.stefan-milius.eu
Moggi, E.: Notions of computation and monads. Inform. and Comput. 93(1), 55–92 (1991)
Nelson, E.: Iterative algebras. Theoret. Comput. Sci. 25, 67–94 (1983)
Tiuryn, J.: Unique fixed points vs. least fixed points. Theoret. Comput. Sci. 12, 229–254 (1980)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Milius, S., Palm, T., Schwencke, D. (2009). Complete Iterativity for Algebras with Effects. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds) Algebra and Coalgebra in Computer Science. CALCO 2009. Lecture Notes in Computer Science, vol 5728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03741-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-03741-2_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03740-5
Online ISBN: 978-3-642-03741-2
eBook Packages: Computer ScienceComputer Science (R0)