Nothing Special   »   [go: up one dir, main page]

Skip to main content

Approximating Labelled Markov Processes Again!

  • Conference paper
Algebra and Coalgebra in Computer Science (CALCO 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5728))

Included in the following conference series:

  • 635 Accesses

Abstract

Labelled Markov processes are continuous-state fully probabilistic labelled transition systems. They can be seen as co-algebras of a suitable monad on the category of measurable space. The theory as developed so far included a treatment of bisimulation, logical characterization of bisimulation, weak bisimulation, metrics, universal domains for LMPs and approximations. Much of the theory involved delicate properties of analytic spaces.

Recently a new kind of averaging procedure was used to construct approximations. Remarkably, this version of the theory uses a dual view of LMPs and greatly simplifies the theory eliminating the need to consider aanlytic spaces. In this talk I will survey some of the ideas that led to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sontag, E.: Mathematical Control Theory. Texts in Applied Mathematics, vol. 6. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  2. Blute, R., Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov processes. In: Proceedings of the Twelfth IEEE Symposium On Logic In Computer Science, Warsaw, Poland (1997)

    Google Scholar 

  3. Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labeled Markov processes. Information and Computation 179(2), 163–193 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  5. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, Chichester (1994)

    Book  MATH  Google Scholar 

  6. Larsen, K.G., Skou, A.: Bisimulation through probablistic testing. Information and Computation 94, 1–28 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. de Vink, E., Rutten, J.J.M.M.: Bisimulation for probabilistic transition systems: A coalgebraic approach. In: Proceedings of the 24th International Colloquium On Automata Languages And Programming (1997)

    Google Scholar 

  8. Kozen, D.: A probabilistic PDL. Journal of Computer and Systems Sciences 30(2), 162–178 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Danos, V., Desharnais, J., Panangaden, P.: Conditional expectation and the approximation of labelled markov processes. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 477–491. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Feller, W.: An Introduction to Probability Theory and its Applications II, 2nd edn. John Wiley and Sons, Chichester (1971)

    MATH  Google Scholar 

  11. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: The metric analogue of weak bisimulation for labelled Markov processes. In: Proceedings of the Seventeenth Annual IEEE Symposium On Logic In Computer Science, pp. 413–422 (2002)

    Google Scholar 

  12. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Van Nostrand (1960)

    Google Scholar 

  13. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Approximating labeled Markov processes. Information and Computation 184(1), 160–200 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: A metric for labelled Markov processes. Theoretical Computer Science 318(3), 323–354 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hopf, E.: The general temporally discrete Markoff process. J. Rational Math. Mech. Anal. 3, 13–45 (1954)

    MathSciNet  MATH  Google Scholar 

  16. Danos, V., Desharnais, J., Laviolette, F., Panangaden, P.: Bisimulation and cocongruence for probabilistic systems. Information and Computation 204(4), 503–523 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bartels, F., Sokolova, A., de Vink, E.: A hierarchy of probabilistic system types. Theoretical Computer Science 327, 3–22 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Billingsley, P.: Probability and Measure. Wiley Interscience, Hoboken (1995)

    MATH  Google Scholar 

  19. Choksi, J.: Inverse limits on measure spaces. Proc. London Math. Soc. 8(3), 321–342 (1958)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chaput, P., Danos, V., Panangaden, P., Plotkin, G. (2009). Approximating Labelled Markov Processes Again!. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds) Algebra and Coalgebra in Computer Science. CALCO 2009. Lecture Notes in Computer Science, vol 5728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03741-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03741-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03740-5

  • Online ISBN: 978-3-642-03741-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics