Nothing Special   »   [go: up one dir, main page]

Skip to main content

Succinct Representation of Codes with Applications to Testing

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX 2009, RANDOM 2009)

Abstract

Motivated by questions in property testing, we search for linear error-correcting codes that have the “single local orbit” property: they are specified by a single local constraint and its translations under the symmetry group of the code. We show that the dual of every “sparse” binary code whose coordinates are indexed by elements of \({\mathbb{F}}_{2^n}\) for prime n, and whose symmetry group includes the group of non-singular affine transformations of \({\mathbb{F}}_{2^n}\), has the single local orbit property. (A code is sparse if it contains polynomially many codewords in its block length.) In particular this class includes the dual-BCH codes for whose duals (BCH codes) simple bases were not known. Our result gives the first short (O(n)-bit, as opposed to \(\exp(n)\)-bit) description of a low-weight basis for BCH codes. If 2n − 1 is a Mersenne prime, then we get that every sparse cyclic code also has the single local orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Kaufman, T., Krivelevich, M., Litsyn, S., Ron, D.: Testing Reed-Muller codes. IEEE Transactions on Information Theory 51(11), 4032–4039 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. Journal of Computer and System Sciences 47(3), 549–595 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourgain, J.: Mordell’s exponential sum estimate revisited. J. Amer. Math. Soc. 18(2), 477–499 (2005) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain, J.: Some arithmetical applications of the sum-product theorems in finite fields. In: Geometric aspects of functional analysis. Lecture Notes in Math., vol. 1910, pp. 99–116. Springer, Berlin (2007)

    Chapter  Google Scholar 

  5. Bourgain, J., Katz, N., Tao, T.: A sum-product estimate in finite fields, and applications. Geom. Funct. Anal. 14(1), 27–57 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J., Chang, M.-C.: A Gauss sum estimate in arbitrary finite fields. C. R. Math. Acad. Sci. Paris 342(9), 643–646 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgain, J., Konyagin, S.V.: Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order. C. R. Math. Acad. Sci. Paris 337(2), 75–80 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. JACM 45(4), 653–750 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goldreich, O., Sudan, M.: Locally testable codes and PCPs of almost-linear length. J. ACM 53(4), 558–655 (2002); Preliminary version in FOCS 2002

    Article  MathSciNet  Google Scholar 

  10. Jutla, C.S., Patthak, A.C., Rudra, A., Zuckerman, D.: Testing low-degree polynomials over prime fields. In: FOCS 2004, pp. 423–432. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  11. Kaufman, T., Litsyn, S.: Almost orthogonal linear codes are locally testable. In: FOCS, pp. 317–326. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  12. Kaufman, T., Litsyn, S.: Long extended BCH codes are spanned by minimum weight words. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A. (eds.) AAECC 2006. LNCS, vol. 3857, pp. 285–294. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Kaufman, T., Ron, D.: Testing polynomials over general fields. SIAM J. Comput. 36(3), 779–802 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kaufman, T., Sudan, M.: Sparse random linear codes are locally decodable and testable. In: FOCS, pp. 590–600. IEEE Computer Society Press, Los Alamitos (2007)

    Google Scholar 

  15. Kaufman, T., Sudan, M.: Algebraic property testing: the role of invariance. In: Ladner, R.E., Dwork, C. (eds.) STOC, pp. 403–412. ACM Press, New York (2008)

    Google Scholar 

  16. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Elsevier/North-Holland, Amsterdam (1981)

    Google Scholar 

  17. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to program testing. SIAM Journal on Computing 25(2), 252–271 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. van Lint, J.H.: Introduction to Coding Theory, 3rd edn. Graduate Texts in Mathematics, vol. 86. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grigorescu, E., Kaufman, T., Sudan, M. (2009). Succinct Representation of Codes with Applications to Testing. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2009 2009. Lecture Notes in Computer Science, vol 5687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03685-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03685-9_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03684-2

  • Online ISBN: 978-3-642-03685-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics