Nothing Special   »   [go: up one dir, main page]

Skip to main content

NP-Completeness of st-Orientations for Plane Graphs

  • Conference paper
Fundamentals of Computation Theory (FCT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5699))

Included in the following conference series:

Abstract

An st-orientation or bipolar orientation of a 2-connected graph G is an orientation of its edges to generate a directed acyclic graph with a single source s and a single sink t. Given a plane graph G and two vertices s and t on the exterior face of G, the problem of finding an optimum st-orientation, i.e., an st-orientation in which the length of the longest st-path is minimized, was first proposed indirectly by Rosenstiehl and Tarjan in [14] and then later directly by He and Kao in [6]. In this paper, we prove that, given a 2-connected plane graph G, two vertices s, t, on the exterior face of G and a positive integer K, the decision problem of whether G has an st-orientation, where the maximum length of an st-path is ≤ K, is NP-Complete. This solves a long standing open problem on the complexity of optimum st-orientations for plane graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Annexstein, F., Berman, K.: Directional routing via generalized st-numberings. Discrete Mathematics 13, 268–279 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  3. Even, S., Tarjan, R.E.: Computing an st-Numbering. Theoretical Computer Science 2, 339–344 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gallai, T.: On directed paths and circuits. In: Theory of Graphs: International Symposium, pp. 215–232 (1968)

    Google Scholar 

  5. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)

    MATH  Google Scholar 

  6. He, X., Kao, M.: Regular edge labelings and drawings of planar graphs. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 96–103. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  7. Lempel, A., Even, S., Cederbaum, I.: An algorithm for planarity testing of graphs. In: Theory of Graphs. Proc. of an International Symposium, Rome, July 1966, pp. 215–232 (1967)

    Google Scholar 

  8. Mendez, P.O.: Orientations bipolaires, PhD thesis, Ecole des Hautes Etudes en Sciences Sociales, Paris (1994)

    Google Scholar 

  9. Mursalin, A., Asaduzzaman, S., Saidur, R., Matsumoto, M.: Proposal for st-routing. Telecommunication Systems 25, 287–298 (2004)

    Article  Google Scholar 

  10. Nakano, S., Saidur, M.R., Nishizeki, T.: A linear-time algorithm for four-partitioning four-connected planar graphs. Information Processing Letters 62, 315–322 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Papakostas, A., Tollis, I.G.: Algorithms for area-efficient orthogonal drawings. Computational Geometry: Theory and Applications 9, 83–110 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Papamanthou, C., Tollis, I.G.: Applications of Parameterized st-Orientations in Graph Drawing Algorithms. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 355–367. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Papamanthou, C., Tollis, I.G.: Algorithms for computing a parameterized st-orientation. Theoretical Computer Science 408, 224–240 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rosenstiehl, P., Tarjan, R.E.: Rectilinear Planar Layouts and Bipolar Orientations of Planar Graphs. Discrete & Computational Geometry 1, 343–353 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar graphs. Discrete and Computational Geometry 1, 321–341 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sadasivam, S., Zhang, H. (2009). NP-Completeness of st-Orientations for Plane Graphs. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds) Fundamentals of Computation Theory. FCT 2009. Lecture Notes in Computer Science, vol 5699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03409-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03409-1_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03408-4

  • Online ISBN: 978-3-642-03409-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics