Nothing Special   »   [go: up one dir, main page]

Skip to main content

Small Weakly Universal Turing Machines

  • Conference paper
Fundamentals of Computation Theory (FCT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5699))

Included in the following conference series:

Abstract

We give small universal Turing machines with state-symbol pairs of (6,2), (3,3) and (2,4). These machines are weakly universal, which means that they have an infinitely repeated word to the left of their input and another to the right. They simulate Rule 110 and are currently the smallest known weakly universal Turing machines. Despite their small size these machines are efficient polynomial time simulators of Turing machines.

Turlough Neary is funded by the Irish Research Council for Science, Engineering and Technology and by Science Foundation Ireland Research Frontiers Programme grant number 07/RFP/CSMF641. Damien Woods was supported by a Project of Excellence from the Junta de Andalucía grant TIC-581, and by Science Foundation Ireland grant 04/IN3/1524.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baiocchi, C.: 3N+1, UTM e tag-system. Technical Report Pubblicazione 98/38, Dipartimento di Matematico, Università di Roma (1998) (in Italian)

    Google Scholar 

  2. Baiocchi, C.: Three small universal Turing machines. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 1–10. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Cocke, J., Minsky, M.: Universality of tag systems with P= 2. Journal of the ACM 11(1), 15–20 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cook, M.: Universality in elementary cellular automata. Complex Systems 15(1), 1–40 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to parallel computation: P-completeness theory. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  6. Hermann, G.: The uniform halting problem for generalized one state Turing machines. In: Proceedings, Ninth Annual Symposium on Switching and Automata Theory (FOCS), pp. 368–372. IEEE, New York (1968)

    Chapter  Google Scholar 

  7. Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages, and computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  8. Kudlek, M.: Small deterministic Turing machines. Theoretical Computer Science 168(2), 241–255 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kudlek, M., Rogozhin, Y.: A universal Turing machine with 3 states and 9 symbols. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 311–318. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Margenstern, M.: Frontier between decidability and undecidability: A survey. Theoretical Computer Science 231(2), 217–251 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Margenstern, M., Pavlotskaya, L.: On the optimal number of instructions for universality of Turing machines connected with a finite automaton. International Journal of Algebra and Computation 13(2), 133–202 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Michel, P.: Small Turing machines and the generalized busy beaver competition. Theoretical Computer Science 326(1-3), 45–56 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Minsky, M.: A 6-symbol 7-state universal Turing machines. Technical Report 54-G-027, MIT (1960)

    Google Scholar 

  14. Minsky, M.: Size and structure of universal Turing machines using tag systems. In: Recursive Function Theory, Proceedings, Symposium in Pure Mathematics, vol. 5, pp. 229–238. AMS, Provelence (1962)

    Chapter  Google Scholar 

  15. Neary, T.: Small universal Turing machines. PhD thesis, Department of Computer Science, National University of Ireland, Maynooth (2008)

    Google Scholar 

  16. Neary, T., Woods, D.: P-completeness of cellular automaton Rule 110. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 132–143. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Neary, T., Woods, D.: Four small universal Turing machines. Fundamenta Informaticae 91(1), 123–144 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Pavlotskaya, L.: Solvability of the halting problem for certain classes of Turing machines. Mathematical Notes (Springer) 13(6), 537–541 (1973)

    Article  MATH  Google Scholar 

  19. Pavlotskaya, L.: Dostatochnye uslovija razreshimosti problemy ostanovki dlja mashin T’juring. Problemi kibernetiki, 91–118 (1978) (in Russian)

    Google Scholar 

  20. Priese, L.: Towards a precise characterization of the complexity of universal and non-universal Turing machines. Siam journal of Computing 8(4), 508–523 (1979)

    Article  MATH  Google Scholar 

  21. Rogozhin, Y.: Small universal Turing machines. Theoretical Computer Science 168(2), 215–240 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shannon, C.E.: A universal Turing machine with two internal states. Automata Studies, Annals of Mathematics Studies 34, 157–165 (1956)

    MathSciNet  Google Scholar 

  23. Watanabe, S.: 5-symbol 8-state and 5-symbol 6-state universal Turing machines. Journal of ACM 8(4), 476–483 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  24. Watanabe, S.: 4-symbol 5-state universal Turing machine. Information Processing Society of Japan Magazine 13(9), 588–592 (1972)

    Google Scholar 

  25. Wolfram, S.: A new kind of science. Wolfram Media, Champaign (2002)

    Google Scholar 

  26. Woods, D., Neary, T.: On the time complexity of 2-tag systems and small universal Turing machines. In: 47\(^{\textrm{th}}\) Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 439–448. IEEE, New York (2006)

    Google Scholar 

  27. Woods, D., Neary, T.: The complexity of small universal Turing machines: A survey. Theoretical Computer Science 410(4–5), 443–450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Woods, D., Neary, T.: Small semi-weakly universal Turing machines. Fundamenta Informaticae 91(1), 179–195 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neary, T., Woods, D. (2009). Small Weakly Universal Turing Machines. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds) Fundamentals of Computation Theory. FCT 2009. Lecture Notes in Computer Science, vol 5699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03409-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03409-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03408-4

  • Online ISBN: 978-3-642-03409-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics