Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning with a Quadruped Chopstick Robot

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5632))

  • 2391 Accesses

Abstract

Organisms exhibit a close structure-function relationship and a slight change in structure may in turn change their outputs accordingly [1]. This feature is important as it is the main reason why organisms have better malleability than computers in dealing with environmental changes. A quadruped chopstick robot controlled by a biologically-motivated neuromolecular model, named Miky, has been developed. Miky’s skeleton and its four feet were comprised of 16 deposable chopsticks, with each foot being controlled by an actuator (motor). The neuromolecular model is a multilevel neural network which captures the biological structure-function relationship and serves to transform signals sent from its sensors into a sequence of signals in space and time for controlling Miky’s feet (through actuators). The task is to teach Miky to walk, jump, pace, gallop, or make a turn. Our experimental result shows that Miky exhibits a close structure-function relationship that allows it to learn to accomplish these tasks in a continuous manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Conrad, M.: Bootstrapping on the adaptive landscape. BioSystems 11, 167–182 (1979)

    Article  Google Scholar 

  2. Conrad, M.: The geometry of evolution. BioSystem 24, 61–81 (1990)

    Article  Google Scholar 

  3. de Garis, H.: An artificial brain: ATR’s cam-brain project aims to build/evolve an artificial brain with a million neural net modules inside a trillion cell cellular automata machine. New Generation Computing Journal 12, 2 (1994)

    Google Scholar 

  4. Nam, D., Seo, Y.D., Park, L.-J., Park, C.H., Kim, B.: Parameter optimization of an on-robot voltage reference circuit using evolutionary programming. IEEE Trans. Evol. Comput. 5(4), 414–421 (2001)

    Article  Google Scholar 

  5. Higuchi, T., Iwata, M., Keymeulen, D., Sakanashi, H., Murakawa, M., Kajitani, I., Takahashi, E., Toda, K., Salami, M., Kajihara, N., Otsu, N.: Real-world applications of analog and digital evolvable hardware. IEEE Trans. Evol. Comput. 3(3), 220–235 (1999)

    Article  Google Scholar 

  6. Thompson, A.: Evolving electronic robot controllers that exploit hardware resources. In: Proc. 3rd European Conf. Artificial Life, Granada, Spain, pp. 640–656 (1995)

    Google Scholar 

  7. Miller, J.F., Downing, K.: Evolution in materio: looking beyond the silicon box. In: Proc. NASA/DoD Conf. Evolvable Hardware, pp. 167–176 (2002)

    Google Scholar 

  8. Vassilev, V.K., Job, D., Miller, J.F.: Towards the automatic design of more efficient digital circuits. In: Proc. 2nd NASA/DoD Workshop on Evolvable Hardware, Palo Alto, CA, pp. 151–160 (2000)

    Google Scholar 

  9. Thompson, A., Layzell, P.: Analysis of unconventional evolved electronics. Comm. ACM 42(4), 71–79 (1999)

    Article  Google Scholar 

  10. Chen, J.-C., Conrad, M.: Learning synergy in a multilevel neuronal architecture. BioSystems 32(2), 111–142 (1994)

    Article  Google Scholar 

  11. Liberman, E.A., Minina, S.V., Shklovsky-Kordy, N.E., Conrad, M.: Microinjection of cyclic nucleotides provides evidence for a diffusional mechanism of intraneuronal control. BioSystems 15, 127–132 (1982)

    Article  Google Scholar 

  12. Hameroff, S.R., Watt, R.C.: Information processing in microtubules. J. Theoretical Biology 98, 549–561 (1982)

    Article  Google Scholar 

  13. Matsumoto, G., Tsukita, S., Arai, T.: Organization of the axonal cytoskeleton: differentiation of the microtubule and actin filament arrays. In: Kinesin, D., Warner, F.D., McIntosh, J.R. (eds.) Cell Movement. Microtubule Dynamics, vol. 2, pp. 335–356. Alan R. Liss, New York (1989)

    Google Scholar 

  14. Werbos, P.: The cytoskeleton: why it may be crucial to human learning and to neurocontrol. Nanobiology 1, 75–95 (1992)

    Google Scholar 

  15. Conrad, M.: Molecular information processing in the central nervous system. In: Conrad, M., Gütinger, W., Dal Cin, M. (eds.) Physics and Mathematics of the Nervous System, pp. 82–127. Springer, Heidelberg (1974)

    Chapter  Google Scholar 

  16. Conrad, M.: Molecular information structures in the brain. J. Neurosci. Res. 2, 233–254 (1976)

    Article  Google Scholar 

  17. Eldredge, N., Gould, S.J.: Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf, T.J.M. (ed.) Models in Paleobiology, pp. 82–115. Freeman, Cooper and Company, San Francisco (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, WC., Chen, JC., Wu, Sz., Lin, KM. (2009). Learning with a Quadruped Chopstick Robot. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2009. Lecture Notes in Computer Science(), vol 5632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03070-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03070-3_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03069-7

  • Online ISBN: 978-3-642-03070-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics