Abstract
We present a system for regression using MLP neural networks with hyperbolic tangent functions in the input, hidden and output layer. The activation functions in the input and output layer are adjusted during the network training to fit better the distribution of the underlying data, while the network weights are trained to fit desired input-output mapping. A non-gradient variable step size training algorithm is used since it proved effective for that kind of problems. Finally we present a practical implementation, the system found in the optimization of metallurgical processes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dasgupta, B., Schnitger, G.: The Power of Approximating: A Comparison of Activation Functions. In: Advances in Neural Information Processing Systems, vol. 5, pp. 615–622. Morgan Kaufmann, San Francisco (1993)
Hornik, K., Stinchcombe, M., White, H., Auer, P.: Degree of approximation results for feed-forward networks approximating unknown mappings and their derivatives, NeuroColt Technical Report Series, NC-TR-95-004, 1-15 (1995)
Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp. 15–27. Springer, Heidelberg (2002)
Biesiada, J., Duch, W., Kachel, A., Mączka, K., Pałucha, S.: Feature ranking methods based on information entropy with Parzen windows. In: Proc. of Research in Electrotechnology and Applied Informatics, Katowice-Kraków, pp. 109–118 (2005)
Alexis, J., Jonsson, P., Jonsson, L.: Heating and electromagnetic stirring in a ladle furnace – a simulation model. ISIJ Int. 40(11), 1098–1104 (2000)
Wieczorek, T.: Intelligent control of the electric-arc steelmaking process using artificial neural networks. Computer Methods in Material Science 6(1), 9–14 (2006)
Siemens, A.G.: Optimization of the electrode control system with neural networks, pp. 1–8. Siemens Press (2003)
Wieczorek, T., Pyka, M.: Neural modeling of the arc-electric steelmaking process. In: Proc. of 9th Int. Conf. Research in Electrotechnology and Applied Informatics, Katowice, pp. 105–108 (2005)
Wieczorek, T., Blachnik, M., Mączka, K.: Building a model for time reduction of steel scrap meltdown in the electric arc furnace (EAF). General strategy with a comparison of feature selection methods. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 1149–1159. Springer, Heidelberg (2008)
Hall, M.A.: Correlation based feature selection for machine learning., PhD thesis, Dept. of Comp. Science, Univ. of Waikato, Hamilton, New Zealand (1998)
Kordos, M., Duch, W.: Variable step search algorithm for feedforward networks. Neurocomputing 71(13-15), 2470–2480 (2008)
Gallagher, M.: Multi-layer Perceptron Error Surfaces Visualization, Structure and Modeling., PhD Thesis, University of Queensland (2000)
Kordos, M., Duch, W.: A Survey of Factors Influencing MLP Error Surface. Control and Cybernetics 33(4), 611–631 (2004)
Schölkopf, B., Smola, A.J.: Learning with kernels. MIT Press, Cambridge (2002)
Eskander, G.S., et al.: Round Trip Time Prediction Using the Symbolic Function Network Approach, http://arxiv.org/ftp/arxiv/papers/0806/0806.3646.pdf
Setiono, R., Thong, J.: An approach to generate rules from neural networks for regression problems. European Journal of Operational Research 155(1), 239–250 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kordos, M. (2009). Neural Network Regression for LHF Process Optimization. In: Köppen, M., Kasabov, N., Coghill, G. (eds) Advances in Neuro-Information Processing. ICONIP 2008. Lecture Notes in Computer Science, vol 5507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03040-6_55
Download citation
DOI: https://doi.org/10.1007/978-3-642-03040-6_55
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03039-0
Online ISBN: 978-3-642-03040-6
eBook Packages: Computer ScienceComputer Science (R0)