Nothing Special   »   [go: up one dir, main page]

Skip to main content

Incremental Learning in the Non-negative Matrix Factorization

  • Conference paper
Advances in Neuro-Information Processing (ICONIP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5507))

Included in the following conference series:

Abstract

The non-negative matrix factorization (NMF) is capable of factorizing strictly positive data into strictly positive activations and base vectors. In its standard form, the input data must be presented as a batch of data. This means the NMF is only able to represent the input space contained in this batch of data whereas it is not able to adapt to changes afterwards. In this paper we propose a method to overcome this limitation and to enable the NMF to incrementally and continously adapt to new data. The proposed algorithm is able to cover the (possibly growing) input space without putting further constraints on the algorithm. We show that using our method the NMF is able to approximate the dimensionality of a dataset and therefore is capable to determine the required number of base vectors automatically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  2. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS, pp. 556–562 (2000)

    Google Scholar 

  3. Cao, B., Shen, D., Sun, J.-T., Wang, X., Yang, Q., Chen, Z.: Detect and track latent factors with online nonnegative matrix factorization. In: IJCAI, pp. 2689–2694 (2007)

    Google Scholar 

  4. University of Essex: Essex face94 dataset, http://cswww.essex.ac.uk/mv/allfaces/faces94.html

  5. Donoho, D., Stodden, V.: When does non-negative matrix factorization give a correct decomposition into parts? In: NIPS (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rebhan, S., Sharif, W., Eggert, J. (2009). Incremental Learning in the Non-negative Matrix Factorization. In: Köppen, M., Kasabov, N., Coghill, G. (eds) Advances in Neuro-Information Processing. ICONIP 2008. Lecture Notes in Computer Science, vol 5507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03040-6_117

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03040-6_117

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03039-0

  • Online ISBN: 978-3-642-03040-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics