Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Framework for Multi-class Learning in Micro-array Data Analysis

  • Conference paper
Artificial Intelligence in Medicine (AIME 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5651))

Included in the following conference series:

Abstract

A large pool of techniques have already been developed for analyzing micro-array datasets but less attention has been paid on multi-class classification problems. In this context, selecting features and quantify classifiers may be hard since only few training examples are available in each single class. This paper demonstrates a framework for multi-class learning that considers learning a classifier within each class independently and grouping all relevant features in a single dataset. Next step, that dataset is presented as input to a classification algorithm that learns a global classifier across the classes. We analyze two micro-array datasets using the proposed framework. Results demonstrate that our approach is capable of identifying a small number of influential genes within each class while the global classifier across the classes performs better than existing multi-class learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Piatetsky-Shapiro, G., Tamayo, P.: Microarray Data Mining: Facing the Challenges. ACM SIGKDD Explorations 5(2) (2003)

    Google Scholar 

  2. Saeys, Y., Inza, I., Larranaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)

    Article  CAS  PubMed  Google Scholar 

  3. Golub, T.R., et al.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  CAS  PubMed  Google Scholar 

  4. Guyon, I., Weston, J., Barnill, S.: Gene Selection for Cancer Classification Using Support Vector Machines. Machine Learning 46, 389–422 (2002)

    Article  Google Scholar 

  5. Li, T., Zhang, C., Ogihara, M.: A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20(15), 2429–2437 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Hastie, T., Tibshirani, R., Friedman, J.: The elements of Statistical Learning: Data Mining, Inference, Prediction. Springer, Heidelberg (2001)

    Book  Google Scholar 

  7. Weston, J., Watkins, C.: Multi-class support vector machines. Technical Report, Department of Computer Science, Holloway, University of London, Egham, UK (1998)

    Google Scholar 

  8. Lee, Y., Lee, C.K.: Classification of multiple cancer types by multicategory support vector machines using gene expression data. Bioinformatics 19, 1132–1139 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97(1–2), 245–271 (1997)

    Article  Google Scholar 

  10. Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 17(3), 1–12 (2005)

    Article  Google Scholar 

  11. Kohavi, R., John, G.: Wrappers for feature subset selection. Artificial Intelligence 97(1-2), 273–324 (1997)

    Article  Google Scholar 

  12. Pranckeviciene, E., Somorjai, R.: On Classification Models of Gene Expression Microarrays: The Simpler the Better. International Joint Conference on Neural Networks (2006)

    Google Scholar 

  13. Yukinawa, N., et al.: Optimal aggregation of binary classifiers for multi-class cancer diagnosis using gene expression profiles. IEEE/ACM Transactions on Computational Biology and Bioinformatics (preprint) (2008)

    Google Scholar 

  14. Simon, H.: Supervised analysis when the number of candidate features (p) greatly exceeds the number of cases (n). SIGKDD Explorations 5(2), 31–36 (2003)

    Article  Google Scholar 

  15. Bell, D., Wang, H.: A formalism for relevance and its application in feature subset selection. Mach. Learning 41(2), 175–195 (2000)

    Article  Google Scholar 

  16. Caruana, R., Freitag, D.: How useful is relevance? In: Working Notes of the AAAI Fall Symposium on Relevance. AAAI Press, N. Orleans (1994)

    Google Scholar 

  17. Bosin, A., Dessì, N., Pes, B.: A Cost-Sensitive Approach to Feature Selection in Micro-Array Data Classification. In: Masulli, F., Mitra, S., Pasi, G. (eds.) WILF 2007. LNCS, vol. 4578, pp. 571–579. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Bosin, A., Dessì, N., Pes, B.: Capturing Heuristics and Intelligent Methods for Improving Micro-array Data Classification. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 790–799. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Yeoh, E.J., et al.: Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1, 133–143 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. Bhattacharjee, A., Richards, W.G., et al.: Classification of human lung carcinomas by mrna expression profiling reveals distinct adenoma subclasses. PNAS 98, 13790–13795 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Elsevier, Amsterdam (2005)

    Google Scholar 

  22. Statnikov, A., Aliferis, C.F., et al.: A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 21(5) (2005)

    Google Scholar 

  23. Liu, H., et al.: A Comparative Study on Feature Selection and Classification Methods Using Gene Expression Profiles and Proteomic Patterns. Genome informatics 13, 51–60 (2002)

    CAS  PubMed  Google Scholar 

  24. Ling, N.E., Hasan, Y.A.: Classification on microarray data. In: IMT-GT Regional Conference on Mathematics, Statistics and Applications, Malaysia (2006)

    Google Scholar 

  25. Ding, Y., Wilkins, D.: Improving the Performance of SVM-RFE to Select Genes in Microarray Data. BMC Bioinformatics 7(suppl. 2), S12 (2006)

    Article  Google Scholar 

  26. Piatetsky-Shapiro, G., et al.: Capturing Best Practice for Microarray Gene Expression Data Analysis. In: SIGKDD 2003, Washington, USA (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dessì, N., Pes, B. (2009). A Framework for Multi-class Learning in Micro-array Data Analysis. In: Combi, C., Shahar, Y., Abu-Hanna, A. (eds) Artificial Intelligence in Medicine. AIME 2009. Lecture Notes in Computer Science(), vol 5651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02976-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02976-9_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02975-2

  • Online ISBN: 978-3-642-02976-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics