Abstract
This paper presents camera calibration and tracking method for mixed reality based pre-visualization system for filmmaking. The proposed calibration method collects environmental information required for tracking efficiently since the rough camera path and target environment are known before actual shooting. Previous camera tracking methods using natural feature are suitable for outdoor environment. However, it takes large human cost to construct the database. Our proposed method reduces the cost of calibration process by using fiducial markers. Fiducial markers are used as reference points and feature landmark database is constructed automatically. In shooting phase, moreover, the speed and robustness of tracking are improved by using SIFT descriptor.
Chapter PDF
Similar content being viewed by others
References
Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., Maclntyre, B.: Recent advances in augmented reality. IEEE Computer Graphics and Applications 21(6), 34–47 (2001)
Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proc. 6th Int. Symp. on Mixed and Augmented Reality (ISMAR 2007), pp. 225–234 (2007)
Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., Schmalstieg, D.: Pose tracking from natural features on mobile phones. In: Proc. 7th Int. Symp. on Mixed and Augmented Reality (ISMAR 2008), pp. 125–134 (2008)
Tenmoku, R., Ichikari, R., Shibata, F., Kimura, A., Tamura, H.: Design and prototype implementation of MR pre-visualization workflow. In: DVD-ROM Proc. Int. Workshop on Mixed Reality Technology for Filmmaking, pp. 1–7 (2006)
Ichikari, R., Tenmoku, R., Shibata, F., Ohshima, T., Tamura, H.: Mixed reality pre-visualization for filmmaking: On-set camera-work authoring and action rehearsal. The International Journal of Virtual Reality 7(4), 25–32 (2008)
Taketomi, T., Sato, T., Yokoya, N.: Real-time camera position and posture estimation using a feature landmark database with priorities. In: CD-ROM Proc. 19th IAPR Int. Conf. on Pattern Recognition, ICPR 2008 (2008)
Kato, H., Billinghurst, M.: Marker tracking and HMD calibration for a video-based augmented reality conferencing system. In: Proc. 2nd Int. Workshop on Augmented Reality (IWAR 1999), pp. 85–94 (1999)
Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle adjustment – a modern synthesis. In: Proc. ICCV Workshop on Vision Algorithms, pp. 298–372 (1999)
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)
Lowe, D.: Distinctive image features from scale–invariant keypoints. Int J. Comput.Vision 60(2), 91–100 (2004)
Moreno-Noguer, F., Lepetit, V., Fua, P.: Accurate Non-Iterative O(n) Solution to the PnP Problem. In: Proc. 11th Int. Conf. on Computer Vision, pp. 1–8 (2007)
Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)
Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., Schmalstieg, D.: Pose tracking from natural features on mobile phones. In: Proc. 7th Int. Symp. on Mixed and Augmented Reality (ISMAR 2008), pp. 125–134 (2008)
Chum, O., Matas, J.: Matching with PROSAC – progressive sample consensus. In: Proc. IEEE Compt. Soc. Conf. on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 220–226 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Toishita, W. et al. (2009). A Novel Approach to On-Site Camera Calibration and Tracking for MR Pre-visualization Procedure. In: Shumaker, R. (eds) Virtual and Mixed Reality. VMR 2009. Lecture Notes in Computer Science, vol 5622. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02771-0_55
Download citation
DOI: https://doi.org/10.1007/978-3-642-02771-0_55
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02770-3
Online ISBN: 978-3-642-02771-0
eBook Packages: Computer ScienceComputer Science (R0)