Abstract
In this paper we present the parallel QBF Solver PaQuBE. This new solver leverages the additional computational power that can be exploited from modern computer architectures, from pervasive multicore boxes to clusters and grids, to solve more relevant instances and faster than previous generation solvers. PaQuBE extends QuBE, its sequential core, by providing a Master/Slave Message Passing Interface (MPI) based design that allows it to split the problem up over an arbitrary number of distributed processes. Furthermore, PaQuBE’s progressive parallel framework is the first to support advanced knowledge sharing in which solution cubes as well as conflict clauses can be shared. According to the last QBF Evaluation, QuBE is the most powerful state-of-the-art QBF Solver. It was able to solve more than twice as many benchmarks as the next best independent solver. Our results here, show that PaQuBE provides additional speedup, solving even more instances, faster.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Herbstritt, M., Becker, B.: On Combining 01X-Logic and QBF. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 531–538. Springer, Heidelberg (2007)
Dershowitz, N., Hanna, Z., Katz, J.: Bounded model checking with QBF. In: Bacchus, F., Walsh, T. (eds.) SAT 2005, vol. 3569, pp. 408–414. Springer, Heidelberg (2005)
Rintanen, J.: Constructing conditional plans by a theorem prover. Journal of Artificial Intelligence Research 10, 323–352 (1999)
Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem proving. Communication of ACM 5(7), 394–397 (1962)
Gent, I.P., Rowley, A.G.: Solution learning and solution directed backjumping revisited. Technical Report APES-80-2004, APES Research Group (February 2004), http://www.dcs.st-and.ac.uk/~apes/apesreports.html
Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified Boolean formulas. Journal of Artificial Intelligence Research (JAIR) 26, 371–416 (2006)
Kleine-Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Information and Computation 117(1), 12–18 (1995)
Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts in quantified Boolean formula evaluation. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002)
Giunchiglia, E., Marin, P., Narizzano, M.: An effective preprocessor for QBF pre-reasoning (2008)
Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 514–529. Springer, Heidelberg (2006)
Giunchiglia, E., Narizzano, M., Tacchella, A.: QuBE++: An efficient QBF solver. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 201–213. Springer, Heidelberg (2004)
Giunchiglia, E., Marin, P., Narizzano, M.: 24. In: Reasoning with Quantified Boolean Formulas. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 761–780. IOS Press, Amsterdam (2009)
Zhang, H., Bonacina, M.P., Hsiang, J.: Psato: a distributed propositional prover and its application to quasigroup problems. J. Symb. Comput. 21(4-6), 543–560 (1996)
Lewis, M., Schubert, T., Becker, B.: QMiraXT – A Multithreaded QBF Solver. In: Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (January 2009)
Yu, Y., Malik, S.: Validating the result of a quantified boolean formula (QBF) solver: theory and practice. In: Tang, T.A. (ed.) ASP-DAC, pp. 1047–1051. ACM Press, New York (2005)
Feldmann, R., Monien, B., Schamberger, S.: A distributed algorithm to evaluate Quantified Boolean Formulae. In: Proc. AAAI (2000)
Biere, A.: Resolve and expand. In: Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)
Lonsing, F., Biere, A.: Nenofex: Expanding nnf for QBF solving. In: Büning, H.K., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 196–210. Springer, Heidelberg (2008)
Benedetti, M.: sKizzo: A suite to evaluate and certify QBFs. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 369–376. Springer, Heidelberg (2005)
Gent, I.P., Hoos, H.H., Rowley, A.G.D., Smyth, K.: Using stochastic local search to solve quantified Boolean formulae. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 348–362. Springer, Heidelberg (2003)
Pulina, L., Tacchella, A.: A multi-engine solver for quantified Boolean formulas. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 574–589. Springer, Heidelberg (2007)
Samulowitz, H., Memisevic, R.: Learning to solve QBF. In: Proc. AAAI, pp. 255–260 (2007)
Chrabakh, W., Wolski, R.: Gridsat: A chaff-based distributed sat solver for the grid. In: SC 2003: Proceedings of the 2003 ACM/IEEE conference on Supercomputing, Washington, DC, USA, p. 37. IEEE Computer Society, Los Alamitos (2003)
Lewis, M., Schubert, T., Becker, B.: Multithreaded SAT Solving. In: ASP Design Automation Conf., Yokohama, Japan (January 2007)
Feldmann, R., Monien, B., Schamberger, S.: A distributed algorithm to evaluate Quantified Boolean Formulae. In: Proceedings of the 7th Conference on Artificial Intelligence (AAAI 2000) and of the 12th Conference on Innovative Applications of Artificial Intelligence (IAAI 2000), July 30-3, pp. 285–290. AAAI Press, Menlo Park (2000)
Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable implementation of the MPI message passing interface standard. Parallel Computing 22(6), 789–828 (1996)
Snir, M., Otto, S., Walker, D., Dongarra, J., Huss-Lederman, S.: MPI: The Complete Reference. MIT Press, Cambridge (1995)
Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantified Boolean Formulas satisfiability library (QBFLIB) (2001), www.qbflib.org
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lewis, M., Marin, P., Schubert, T., Narizzano, M., Becker, B., Giunchiglia, E. (2009). PaQuBE: Distributed QBF Solving with Advanced Knowledge Sharing. In: Kullmann, O. (eds) Theory and Applications of Satisfiability Testing - SAT 2009. SAT 2009. Lecture Notes in Computer Science, vol 5584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02777-2_46
Download citation
DOI: https://doi.org/10.1007/978-3-642-02777-2_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02776-5
Online ISBN: 978-3-642-02777-2
eBook Packages: Computer ScienceComputer Science (R0)