Nothing Special   »   [go: up one dir, main page]

Skip to main content

Canonical Forms in Interactive Exercise Assistants

  • Conference paper
Intelligent Computer Mathematics (CICM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5625))

Included in the following conference series:

  • 790 Accesses

Abstract

Interactive exercise assistants support students in practicing exercises, and acquiring procedural skills. Many mathematical topics can be practiced in such assistants. Ideally, an interactive exercise assistant not only validates final answers, but also comments on intermediate steps submitted by a student, provides hints on how to proceed, and presents worked-out examples. For these purposes, fine control over the symbolic simplification procedures of the underlying mathematical machinery is needed.

In this paper, we introduce views for mathematical expressions. A view defines an equivalence relation by choosing a canonical form of mathematical expressions. We use views to track and recognize intermediate answers, to help in presenting expressions to a user, and to control the granularity of the steps in worked-out examples. We develop the concept of a view, discuss the laws it satisfies, and show how views are composed, which means that they can be used for multiple exercise classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alimarine, A., Smetsers, S., van Weelden, A., van Eekelen, M., Plasmeijer, R.: There and back again: arrows for invertible programming. In: Haskell 2005, pp. 86–97. ACM Press, New York (2005)

    Google Scholar 

  2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  3. Beeson, M.J.: A computerized environment for learning algebra, trigonometry, and calculus. Journal of Artificial Intelligence and Education 1, 65–76 (1990)

    Google Scholar 

  4. Beeson, M.J.: Design principles of MathPert: Software to support education in algebra and calculus. In: Kajler, N. (ed.) Computer-Human Interaction in Symbolic Computation, pp. 89–115. Springer, Heidelberg (1998)

    Google Scholar 

  5. Boon, P., Drijvers, P.: Algebra en applets, leren en onderwijzen (algebra and applets, learning and teaching, in Dutch) (2005), http://www.fi.uu.nl/publicaties/literatuur/6571.pdf

  6. Chaachoua, H., et al.: Aplusix, a learning environment for algebra, actual use and benefits. In: ICME 2004: 10th International Congress on Mathematical Education (May 2008), http://www.itd.cnr.it/telma/papers.php

  7. Cohen, A., Cuypers, H., Reinaldo Barreiro, E., Sterk, H.: Interactive mathematical documents on the web. In: Algebra, Geometry and Software Systems, pp. 289–306. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Gang, X.: WIMS: An interactive mathematics server. Journal of Online Mathematics and its Applications (2001)

    Google Scholar 

  9. Goguadze, G., González Palomo, A., Melis, E.: Interactivity of exercises in ActiveMath. In: International Conference on Computers in Education, ICCE 2005 (2005)

    Google Scholar 

  10. Heeren, B., Jeuring, J., van Leeuwen, A., Gerdes, A.: Specifying strategies for exercises. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F., et al. (eds.) AISC 2008, Calculemus 2008, and MKM 2008. LNCS (LNAI), vol. 5144, pp. 430–445. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Kyle, J., Sangwin, C.J.: To simplify or not to simplify: that is the question in the CAA of mathematics. In: 3rd International Conference on the Teaching of Mathematics (2006)

    Google Scholar 

  12. van Noort, T., Yakushev, A.R., Holdermans, S., Jeuring, J., Heeren, B.: A lightweight approach to datatype-generic rewriting. In: WGP 2008, pp. 13–24. ACM Press, New York (2008)

    Google Scholar 

  13. Paterson, R.: Arrows and computation. In: Gibbons, J., de Moor, O. (eds.) The Fun of Programming, Palgrave, pp. 201–222 (2003)

    Google Scholar 

  14. Jones, S.P., et al.: Haskell 98, Language and Libraries. The Revised Report. Cambridge University Press, Cambridge (2003); A special issue of the Journal of Functional Programming, http://www.haskell.org/

    MATH  Google Scholar 

  15. The OpenMath Society. The OpenMath Standard (2006), http://www.openmath.org/standard/index.html

  16. Sorge, V.: Non-Trivial Computations in Proof Planning. In: Kirchner, H. (ed.) FroCos 2000. LNCS, vol. 1794, pp. 121–135. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. W3C. MathML 2.0 (2001), http://www.w3.org/Math/

  18. Wadler, P.: Views: A way for pattern matching to cohabit with data abstraction. In: POPL, pp. 307–313 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heeren, B., Jeuring, J. (2009). Canonical Forms in Interactive Exercise Assistants. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds) Intelligent Computer Mathematics. CICM 2009. Lecture Notes in Computer Science(), vol 5625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02614-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02614-0_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02613-3

  • Online ISBN: 978-3-642-02614-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics