Nothing Special   »   [go: up one dir, main page]

Skip to main content

Splice Site Prediction Using Artificial Neural Networks

  • Conference paper
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2008)

Abstract

A system for utilizing an artificial neural network to predict splice sites in genes has been studied. The neural network uses a sliding window of nucleotides over a gene and predicts possible splice sites. Based on the neural network output, the exact location of the splice site is found using a curve fitting of a parabolic function. The splice site location is predicted without prior knowledge of any sensor signals, like ‘GT’ or ‘GC’ for the donor splice sites, or ‘AG’ for the acceptor splice sites. The neural network has been trained using backpropagation on a set of 16965 genes of the model plant Arabidopsis thaliana. The performance is then measured using a completely distinct gene set of 5000 genes, and verified at a set of 20 genes. The best measured performance on the verification data set of 20 genes, gives a sensitivity of 0.891, a specificity of 0.816 and a correlation coefficient of 0.552.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baldi, P., Brunak, S.: Bioinformatics, The Machine Learning Approach, 2nd edn. MIT Press, Cambridge (2001)

    Google Scholar 

  2. Burset, M., Guigó, R.: Evaluation of gene structure prediction programs. Genomics 34(3), 353–367 (1996)

    Article  CAS  PubMed  Google Scholar 

  3. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2001)

    Google Scholar 

  4. Haykin, S.: Neural Networks, A Comprehensive Foundation, 2nd edn. Prentice-Hall, Englewood Cliffs (1998)

    Google Scholar 

  5. Hebsgaard, S., Korning, P.G., Tolstrup, N., Engelbrecht, J., Rouzé, P., Brunak, S.: Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Research 24(17) (1996)

    Google Scholar 

  6. Kartalopoulos, S.V.: Understanding Neural Networks and Fuzzy Logic. IEEE Press, Los Alamitos (1996)

    Google Scholar 

  7. Snyder, E.E., Stormo, G.D.: Identifying genes in genomic DNA sequences. In: DNA and Protein Sequence Analysis. Oxford University Press, Oxford (1997)

    Google Scholar 

  8. The Arabidopsis Information Resource, http://www.arabidopsis.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Johansen, ∅., Ryen, T., Eftes∅l, T., Kjosmoen, T., Ruoff, P. (2009). Splice Site Prediction Using Artificial Neural Networks. In: Masulli, F., Tagliaferri, R., Verkhivker, G.M. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2008. Lecture Notes in Computer Science(), vol 5488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02504-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02504-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02503-7

  • Online ISBN: 978-3-642-02504-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics