Nothing Special   »   [go: up one dir, main page]

Skip to main content

Inverse-Consistent Surface Mapping with Laplace-Beltrami Eigen-Features

  • Conference paper
Information Processing in Medical Imaging (IPMI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5636))

Included in the following conference series:

Abstract

We propose in this work a novel variational method for computing maps between surfaces by combining informative geometric features and regularizing forces including inverse consistency and harmonic energy. To tackle the ambiguity in defining homologous points on smooth surfaces, we design feature functions in the data term based on the Reeb graph of the Laplace-Beltrami eigenfunctions to quantitatively describe the global geometry of elongated anatomical structures. For inverse consistency and robustness, our method computes simultaneously the forward and backward map by iteratively solving partial differential equations (PDEs) on the surfaces. In our experiments, we successfully mapped 890 hippocampal surfaces and report statistically significant maps of atrophy rates between normal controls and patients with mild cognitive impairment (MCI) and Alzheimer’s disease (AD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thompson, P.M., Hayashi, K.M., de Zubicaray, G.I., Janke, A.L., Rose, S.E., Semple, J., Hong, M.S., Herman, D.H., Gravano, D., Doddrell, D.M., Toga, A.W.: Mapping hippocampal and ventricular change in Alzheimer disease. NeuroImage 22(4), 1754–1766 (2004)

    Article  Google Scholar 

  2. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models-their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)

    Article  Google Scholar 

  3. Christensen, G.E., Rabbitt, R.D., Miller, M.I.: Deformable templates using large deformation kinematics. IEEE Trans. Imag. Process. 5(10), 1435–1447 (1996)

    Article  Google Scholar 

  4. Joshi, S., Miller, M.I.: Landmark matching via large deformation diffeomorphisms. IEEE Trans. Imag. Process. 9(8), 1357–1370 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gerig, G., Styner, M., Jones, D., Weinberger, D., Lieberman, J.: Shape analysis of brain ventricles using SPHARM. In: Proc. Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 171–178 (2001)

    Google Scholar 

  6. Davies, R.H., Twining, C.J., Allen, P.D., Cootes, T.F., Taylor, C.J.: Shape discrimination in the hippocampus using an MDL model. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 38–50. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.T.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imag. 23(8), 949–958 (2004)

    Article  Google Scholar 

  8. Wang, L., Miller, J.P., Gado, M.H., McKeel, D.W., Rothermich, M., Miller, M.I., Morris, J.C., Csernansky, J.G.: Abnormalities of hippocampal surface structure in very mild dementia of the alzheimer type. NeuroImage 30(1), 52–60 (2006)

    Article  Google Scholar 

  9. Yeo, B., Sabuncu, M., Vercauteren, T., Ayache, N., Fischl, B., Golland, P.: Spherical demons: Fast surface registration. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 745–753. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Shi, Y., Thompson, P.M., de Zubicaray, G., Rose, S.E., Tu, Z., Dinov, I., Toga, A.W.: Direct mapping of hippocampal surfaces with intrinsic shape context. NeuroImage 37(3), 792–807 (2007)

    Article  Google Scholar 

  11. Pizer, S.M., Fritsch, D.S., Yushkevich, P.A., Johnson, V.E., Chaney, E.L.: Segmentation, registration, and measurement of shape variation via image object shape. IEEE Trans. Med. Imag. 18(10), 851–865 (1999)

    Article  Google Scholar 

  12. Styner, M., Gerig, G., Lieberman, J., Jones, D., Weinberger, D.: Statistical shape analysis of neuroanatomical structures based on medial models. Med. Image. Anal. 7(3), 207–220 (2003)

    Article  Google Scholar 

  13. Yushkevich, P.A., Zhang, H., Gee, J.C.: Continuous medial representation for anatomical structures. IEEE Trans. Med. Imag. 25(12), 1547–1564 (2006)

    Article  Google Scholar 

  14. Christensen, G., Johnson, H.: Consistent image registration. IEEE Trans. Med. Imag. 20(7), 568–582 (2001)

    Article  Google Scholar 

  15. Eells, J., Lemaire, L.: Two reports on harmonic maps. World Scientific, Singapore (1995)

    Book  MATH  Google Scholar 

  16. Mémoli, F., Sapiro, G., Osher, S.: Solving variational problems and partial differential equations mapping into general target manifolds. Journal of Computational Physics 195(1), 263–292 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Osher, S., Sethian, J.: Fronts propagation with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of computational physics 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bertalmío, M., Cheng, L., Osher, S., Sapiro, G.: Variational problems and partial differential equations on implicit surfaces. Journal of Computational Physics 174(2), 759–780 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Reuter, M., Wolter, F., Peinecke, N.: Laplace-Beltrami spectra as Shape-DNA of surfaces and solids. Computer-Aided Design 38, 342–366 (2006)

    Article  Google Scholar 

  20. Qiu, A., Bitouk, D., Miller, M.I.: Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator. IEEE Trans. Med. Imag. 25(10), 1296–1306 (2006)

    Article  Google Scholar 

  21. Niethammer, M., Reuter, M., Wolter, F.E., Bouix, S., Koo, N.P.M.S., Shenton, M.: Global medical shape analysis using the laplace-beltrami spectrum. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 850–857. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Shi, Y., Lai, R., Krishna, S., Sicotte, N., Dinov, I., Toga, A.W.: Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons. In: Proc. MMBIA, pp. 1–7 (2008)

    Google Scholar 

  23. Shi, Y., Lai, R., Kern, K., Sicotte, N., Dinov, I., Toga, A.W.: Harmonic surface mapping with Laplace-Beltrami eigenmaps. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 147–154. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  25. Reeb, G.: Sur les points singuliers d’une forme de Pfaff completement integrable ou d’une fonction nemérique. Comptes Rendus Acad. Sciences 222, 847–849 (1946)

    MATH  Google Scholar 

  26. Uhlenbeck, K.: Generic properties of eigenfunctions. Amer. J. of Math. 98(4), 1059–1078 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. Theory & Applications 22(1–3), 21–74 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Morra, J., Tu, Z., Apostolova, L., Green, A., Avedissian, C., Madsen, S., Parikshak, N., Hua, N., Toga, A., Jack, C., Weiner, M., Weiner, M., Thompson, P.: The ADNI: Validation of a fully automated 3D hippocampal segmentation method using subjects with Alzheimer’s disease, mild cognitive impairment, and elderly controls. NeuroImage (in press)

    Google Scholar 

  29. Mueller, S., Weiner, M., Thal, L., Petersen, R., Jack, C., Jagust, W., Trojanowski, J., Toga, A., Beckett, L.: The Alzheimer’s disease neuroimaging initiative. Clin. North Am. 15, 869–877, xi–xii (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shi, Y., Morra, J.H., Thompson, P.M., Toga, A.W. (2009). Inverse-Consistent Surface Mapping with Laplace-Beltrami Eigen-Features. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02498-6_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02497-9

  • Online ISBN: 978-3-642-02498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics