Nothing Special   »   [go: up one dir, main page]

Skip to main content

Persistence Diagrams of Cortical Surface Data

  • Conference paper
Information Processing in Medical Imaging (IPMI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5636))

Included in the following conference series:

Abstract

We present a novel framework for characterizing signals in images using techniques from computational algebraic topology. This technique is general enough for dealing with noisy multivariate data including geometric noise. The main tool is persistent homology which can be encoded in persistence diagrams. These diagrams visually show how the number of connected components of the sublevel sets of the signal changes. The use of local critical values of a function differs from the usual statistical parametric mapping framework, which mainly uses the mean signal in quantifying imaging data. Our proposed method uses all the local critical values in characterizing the signal and by doing so offers a completely new data reduction and analysis framework for quantifying the signal. As an illustration, we apply this method to a 1D simulated signal and 2D cortical thickness data. In case of the latter, extra homological structures are evident in an control group over the autistic group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bubenik, P., Carlsson, G., Kim, P.T., Luo, Z.: Asymptotic minimax sup-norm risk on manifolds with application to topology (preprint, 2008)

    Google Scholar 

  2. Bubenik, P., Kim, P.T.: A statistical approach to persistent homology. Homology, Homotopy and Applications 9, 337–362 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chung, M.K., Shen, L., Dalton, K.M., Evans, A.C., Davidson, R.J.: Weighted fourier representation and its application to quantifying the amount of gray matter. IEEE Transactions on Medical Imaging 26, 566–581 (2007)

    Article  Google Scholar 

  4. Chung, M.K., Robbins, S., Davidson, R.J., Alexander, A.L., Dalton, K.M., Evans, A.C.: Cortical thickness analysis in autism with heat kernel smoothing. NeuroImage 25, 1256–1265 (2005)

    Article  Google Scholar 

  5. Angenent, S., Hacker, S., Tannenbaum, A., Kikinis, R.: On the laplace-beltrami operator and brain surface flattening. IEEE Transactions on Medical Imaging 18, 700–711 (1999)

    Article  Google Scholar 

  6. Brechbuhler, C., Gerig, G., Kubler, O.: Parametrization of closed surfaces for 3D shape description. Computer Vision and Image Understanding 61, 154–170 (1995)

    Article  Google Scholar 

  7. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete and Computational Geometry 37 (2007)

    Google Scholar 

  8. Collins, D.L., Neelin, P., Peters, T.M., Evans, A.C.: Automatic 3d intersubject registration of MR volumetric data in standardized talairach space. J. Comput. Assisted Tomogr. 18, 192–205 (1994)

    Article  Google Scholar 

  9. Ghrist, R., de Silva, V.: Homological sensor networks. Notic. Amer. Math. Soc. 54, 10–17 (2007)

    MathSciNet  MATH  Google Scholar 

  10. de Silva, V., Perry, P.: Plex version 2.5 (2005), http://math.stanford.edu/comptop/programs/plex

  11. Dequent, M.-L., Mileyko, Y., Edelsbrunner, H., Pourquie, O.: Assessing periodicity in gene expression as measured by microarray data (preprint, 2008)

    Google Scholar 

  12. Edelsbrunner, H., Harer, J.: Persistent homology - a survey. In: Twenty Years After, American Mathematical Society (2008) (in press)

    Google Scholar 

  13. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete and Computational Geometry 28, 511–533 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fischl, B., Dale, A.M.: Measuring the thickness of the human cerebral cortex from magnetic resonance images. PNAS 97, 11050–11055 (2000)

    Article  Google Scholar 

  15. Friston, K.J.: A short history of statistical parametric mapping in functional neuroimaging. Technical Report Technical report, Wellcome Department of Imaging Neuroscience, ION, UCL., London, UK (2002)

    Google Scholar 

  16. Gu, X., Wang, Y.L., Chan, T.F., Thompson, T.M., Yau, S.T.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Transactions on Medical Imaging 23, 1–10 (2004)

    Article  Google Scholar 

  17. Hurdal, M.K., Stephenson, K.: Cortical cartography using the discrete conformal approach of circle packings. NeuroImage 23, S119–S128 (2004)

    Article  Google Scholar 

  18. Joshi, S.C.: Large Deformation Diffeomorphisms and Gaussian Random Fields For Statistical Characterization of Brain Sub-manifolds. Ph.D. thesis. Washington University, St. Louis (1988)

    Google Scholar 

  19. Kiebel, S.J., Poline, J.-P., Friston, K.J., Holmes, A.P., Worsley, K.J.: Robust smoothness estimation in statistical parametric maps using standardized residuals from the general linear model. NeuroImage 10, 756–766 (1999)

    Article  Google Scholar 

  20. Klemelä, J.: Asymptotic minimax risk for the white noise model on the sphere. Scand. J. Statist. 26, 465–473 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kollakian, K.: Performance analysis of automatic techniques for tissue classification in magnetic resonance images of the human brain. Technical Report Master’s thesis, Concordia University, Montreal, Quebec, Canada (1996)

    Google Scholar 

  22. Lerch, J.P., Evans, A.C.: Cortical thickness analysis examined through power analysis and a population simulation. NeuroImage 24, 163–173 (2005)

    Article  Google Scholar 

  23. Luders, E., Narr, K.L., Thompson, P.M., Rex, D.E., Woods, R.P., Jancke, L., Toga, A.W., DeLuca, H.: Gender effects on cortical thickness and the influence of scaling. Human Brain Mapping 27, 314–324 (2006)

    Article  Google Scholar 

  24. MacDonald, J.D., Kabani, N., Avis, D., Evans, A.C.: Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. NeuroImage 12, 340–356 (2000)

    Article  Google Scholar 

  25. Miller, M.I., Banerjee, A., Christensen, G.E., Joshi, S.C., Khaneja, N., Grenander, U., Matejic, L.: Statistical methods in computational anatomy. Statistical Methods in Medical Research 6, 267–299 (1997)

    Article  Google Scholar 

  26. Miller, M.I., Massie, A.B., Ratnanather, J.T., Botteron, K.N., Csernansky, J.G.: Bayesian construction of geometrically based cortical thickness metrics. NeuroImage 12, 676–687 (2000)

    Article  Google Scholar 

  27. Milnor, J.: Morse Theory. Princeton University Press, Princeton (1973)

    Google Scholar 

  28. Morozov, D.: Homological Illusions of Persistence and Stability. Ph.D. thesis, Duke University (2008)

    Google Scholar 

  29. Naiman, D.Q.: Volumes for tubular neighborhoods of spherical polyhedra and statistical inference. Ann. Statist. 18, 685–716 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nichols, T., Hayasaka, S.: Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat. Methods Med. Res. 12, 419–446 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ozturk, O., Ferhatosmanoglu, H., Sacan, A., Wang, Y.:

    Google Scholar 

  32. Siegmund, D.O., Worsley, K.J.: Testing for a signal with unknown location and scale in a stationary gaussian random field. Annals of Statistics 23, 608–639 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging 17, 87–97 (1988)

    Article  Google Scholar 

  34. Taylor, J.E., Worsley, K.J.: Random fields of multivariate test statistics, with applications to shape analysis. Annals of Statistics 36, 1–27 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Timsari, B., Leahy, R.: An optimization method for creating semi-isometric flat maps of the cerebral cortex. In: The Proceedings of SPIE, Medical Imaging (2000)

    Google Scholar 

  36. Worsley, K.J., Marrett, S., Neelin, P., Vandal, A.C., Friston, K.J., Evans, A.C.: A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping 4, 58–73 (1996)

    Article  Google Scholar 

  37. Yezzi, A., Prince, J.L.: An eulerian pde approach for computing tissue thickness. IEEE Transactions on Medical Imaging 22, 1332–1339 (2003)

    Article  Google Scholar 

  38. Zomorodian, A.J.: Computing and Comprehending Topology: Persistence and Hierarchical Morse Complexes. Ph.D. Thesis, University of Illinois, Urbana-Champaign (2001)

    Google Scholar 

  39. Zomorodian, A.J., Carlsson, G.: Computing persistent homology. Discrete and Computational Geometry 33, 249–274 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chung, M.K., Bubenik, P., Kim, P.T. (2009). Persistence Diagrams of Cortical Surface Data. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02498-6_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02497-9

  • Online ISBN: 978-3-642-02498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics