Nothing Special   »   [go: up one dir, main page]

Skip to main content

Smooth 3-D Reconstruction for 2-D Histological Images

  • Conference paper
Information Processing in Medical Imaging (IPMI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5636))

Included in the following conference series:

Abstract

We present an image driven approach to the reconstruction of 3-D volumes from stacks of 2-D post-mortem sections (histology, cryoimaging, autoradiography or immunohistochemistry) in the absence of any external information. We note that a desirable quality of the reconstructed volume is the smoothness of its notable structures (e.g. the gray/white matter surfaces in brain images). Here we propose to use smoothness as a means to drive the reconstruction process itself.

From an initial rigid pair-wise reconstruction of the input 2-D sections, we extract the boundaries of structures of interest. Those are then evolved under a mean curvature flow modified to constrain the flow within 2-D planes. Sparse displacement fields are then computed, independently for each slice, from the resulting flow. A variety of transformations, from globally rigid to arbitrarily flexible ones, can then be estimated from those fields and applied to the individual input 2-D sections to form a smooth volume.

We detail our method and discuss preliminary results on both real histological data and synthetic examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ourselin, S., Roche, A., Subsol, G., Pennec, X., Ayache, N.: Reconstructing a 3D structure from serial histological sections. Image and Vision Computing 19(1-2), 25–31 (2001)

    Article  Google Scholar 

  2. Malandain, G., Bardinet, E., Nelissen, K., Vanduffel, W.: Fusion of autoradiographs with an MR volume using 2-D and 3-D linear transformations. NeuroImage 23(1), 111–127 (2004)

    Article  Google Scholar 

  3. Deverell, M., Salisbury, J., Cookson, M., Holman, J., Dykes, E., Whimster, F.: Three-dimensional reconstruction: methods of improving image registration and interpretation. In: Analytical Cellular Pathology, vol. 5, pp. 253–263 (1993)

    Google Scholar 

  4. Toga, A., Goldkorn, A., Ambach, K., Chao, K., Quinn, B., Yao, P.: Postmortem cryosectioning as an anatomic reference for human brain mapping. Computerized Medical Imaging and Graphics 21(11), 131–141 (1997)

    Article  Google Scholar 

  5. Guest, E., Berry, E., Baldock, R.A., Fidrich, M., Smith, M.A.: Robust point correspondence applied to two-and three-dimensional image registration. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 165–179 (2001)

    Article  Google Scholar 

  6. Kim, B., Frey, K.A., Mukhopadhayay, S., Ross, B.D., Meyer, C.R.: Co-registration of MRI and autoradiography of rat brain in three-dimensions following automatic reconstruction of 2D data set. In: Ayache, N. (ed.) CVRMed 1995. LNCS, vol. 905, pp. 262–266. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  7. Cohen, F., Yang, Z., Huang, Z., Nissanov, J.: Automatic matching of homologous histological sections. IEEE Transactions on Bio-medical Engineering 445(5), 642–649 (1998)

    Article  Google Scholar 

  8. Ourselin, S., Bardinet, E., Dormont, D., Malandain, G., Roche, A., Ayache, N., Tande, D., Parain, K., Yelnik, J.: Fusion of histological sections and MR images: towards the construction of an atlas of the human basal ganglia. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 743–751. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Chakravarty, M.M., Bedell, B.J., Zehntner, S.P., Evans, A.C., Collins, D.L.: Three-dimensional reconstruction of serial histological mouse brain sections. In: ISBI, pp. 987–990 (2008)

    Google Scholar 

  10. Dauguet, J., Delzescaux, T., Condé, F., Mangin, J.F., Ayache, N., Hantraye, P., Frouin, V.: Three-dimensional reconstruction of stained histological slices and 3D non-linear registration with in-vivo MRI for whole baboon brain. Journal of Neuroscience Methods 164, 191–204 (2007)

    Article  Google Scholar 

  11. Gefen, S., Tretiak, O., Nissanov, J.: Elastic 3D alignment of rat brain histological images. IEEE Transactions on Medical Imaging 22(11), 1480–1489 (2003)

    Article  Google Scholar 

  12. Bardinet, E., Ourselin, S., Dormont, D., Malandain, G., Tandé, D., Parain, K., Ayache, N., Yelnik, J.: Co-registration of histological, optical and MR data of the human brain. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 548–555. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Kim, B., Boes, J., Frey, K., Meyer, C.: Mutual information for automated unwarping of rat brain autoradiographs. NeuroImage 5(1), 31–40 (1997)

    Article  Google Scholar 

  14. Wirtz, S., Fischer, B., Modersitzki, J., Schmitt, O.: Super–fast elastic registration of histologic images of a whole rat brain for three–dimensional reconstruction. In: Proceedings of SPIE 2004, Medical Imaging, vol. 5730, pp. 14–19 (2004)

    Google Scholar 

  15. Yushkevich, P.A., Avants, B.B., Ng, L., Hawrylycz, M., Burstein, P.D., Zhang, H., Gee, J.C.: 3D mouse brain reconstruction from histology using a coarse-to-fine approach. In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds.) WBIR 2006. LNCS, vol. 4057, pp. 230–237. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Guest, E., Baldock, R.: Automatic reconstruction of serial sections using the finite element method. BioImaging 3, 154–167 (1995)

    Article  Google Scholar 

  17. Tan, Y., Hua, J., Dong, M.: Feature curve-guided volume reconstruction from 2D images. In: Proceedings of International Symposium on Biomedical Imaging, April 2007, pp. 716–719 (2007)

    Google Scholar 

  18. Ju, T., Warren, J., Carson, J., Bello, M., Kakadiaris, I., Chiu, W., Thaller, C., Eichele, G.: 3D volume reconstruction of a mouse brain from histological sections using warp filtering. Journal of Neuroscience Methods 156, 84–100 (2006)

    Article  Google Scholar 

  19. Laissue, P., Kenwright, C., Hojjat, A., Colchester, A.C.F.: Using curve-fitting of curvilinear features for assessing registration of clinical neuropathology with in vivo MRI. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 1050–1057. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Ourselin, S., Roche, A., Prima, S., Ayache, N.: Block matching: A general framework to improve robustness of rigid registration of medical images. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 557–566. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  21. Malandain, G., Bardinet, E.: Intensity Compensation within Series of Images. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 41–49. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  22. Dauguet, J., Mangin, J.F., Delzescaux, T., Frouin, V.: Robust inter-slice intensity normalization using histogram scale-space analysis. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 242–249. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Suri, J.S., Liu, K., Singh, S., Laxminarayan, S., Zeng, X., Reden, L.: Shape recovery algorithms using level sets in 2-d/3-d medical imagery: a state-of-the-art review. IEEE Transactions on Information Technology in Biomedicine 6(1), 8–28 (2002)

    Article  Google Scholar 

  24. Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  25. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Borgefors, G.: On digital distance transforms in three dimensions. Computer Vision and Image Understanding 64(3), 368–376 (1996)

    Article  Google Scholar 

  27. Gomes, J., Faugeras, O.D.: Level sets and distance functions. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 588–602. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  28. Pitiot, A., Guimond, A.: Geometrical regularization of displacement fields for histological image registration. Medical Image Analysis 12(1), 16–25 (2008)

    Article  Google Scholar 

  29. Rousseeuw, P.J.: Least median of squares regression. Journal of the American Statistical Association 79(388), 871–880 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cifor, A., Pridmore, T., Pitiot, A. (2009). Smooth 3-D Reconstruction for 2-D Histological Images. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02498-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02497-9

  • Online ISBN: 978-3-642-02498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics