Abstract
We present an image driven approach to the reconstruction of 3-D volumes from stacks of 2-D post-mortem sections (histology, cryoimaging, autoradiography or immunohistochemistry) in the absence of any external information. We note that a desirable quality of the reconstructed volume is the smoothness of its notable structures (e.g. the gray/white matter surfaces in brain images). Here we propose to use smoothness as a means to drive the reconstruction process itself.
From an initial rigid pair-wise reconstruction of the input 2-D sections, we extract the boundaries of structures of interest. Those are then evolved under a mean curvature flow modified to constrain the flow within 2-D planes. Sparse displacement fields are then computed, independently for each slice, from the resulting flow. A variety of transformations, from globally rigid to arbitrarily flexible ones, can then be estimated from those fields and applied to the individual input 2-D sections to form a smooth volume.
We detail our method and discuss preliminary results on both real histological data and synthetic examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ourselin, S., Roche, A., Subsol, G., Pennec, X., Ayache, N.: Reconstructing a 3D structure from serial histological sections. Image and Vision Computing 19(1-2), 25–31 (2001)
Malandain, G., Bardinet, E., Nelissen, K., Vanduffel, W.: Fusion of autoradiographs with an MR volume using 2-D and 3-D linear transformations. NeuroImage 23(1), 111–127 (2004)
Deverell, M., Salisbury, J., Cookson, M., Holman, J., Dykes, E., Whimster, F.: Three-dimensional reconstruction: methods of improving image registration and interpretation. In: Analytical Cellular Pathology, vol. 5, pp. 253–263 (1993)
Toga, A., Goldkorn, A., Ambach, K., Chao, K., Quinn, B., Yao, P.: Postmortem cryosectioning as an anatomic reference for human brain mapping. Computerized Medical Imaging and Graphics 21(11), 131–141 (1997)
Guest, E., Berry, E., Baldock, R.A., Fidrich, M., Smith, M.A.: Robust point correspondence applied to two-and three-dimensional image registration. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 165–179 (2001)
Kim, B., Frey, K.A., Mukhopadhayay, S., Ross, B.D., Meyer, C.R.: Co-registration of MRI and autoradiography of rat brain in three-dimensions following automatic reconstruction of 2D data set. In: Ayache, N. (ed.) CVRMed 1995. LNCS, vol. 905, pp. 262–266. Springer, Heidelberg (1995)
Cohen, F., Yang, Z., Huang, Z., Nissanov, J.: Automatic matching of homologous histological sections. IEEE Transactions on Bio-medical Engineering 445(5), 642–649 (1998)
Ourselin, S., Bardinet, E., Dormont, D., Malandain, G., Roche, A., Ayache, N., Tande, D., Parain, K., Yelnik, J.: Fusion of histological sections and MR images: towards the construction of an atlas of the human basal ganglia. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 743–751. Springer, Heidelberg (2001)
Chakravarty, M.M., Bedell, B.J., Zehntner, S.P., Evans, A.C., Collins, D.L.: Three-dimensional reconstruction of serial histological mouse brain sections. In: ISBI, pp. 987–990 (2008)
Dauguet, J., Delzescaux, T., Condé, F., Mangin, J.F., Ayache, N., Hantraye, P., Frouin, V.: Three-dimensional reconstruction of stained histological slices and 3D non-linear registration with in-vivo MRI for whole baboon brain. Journal of Neuroscience Methods 164, 191–204 (2007)
Gefen, S., Tretiak, O., Nissanov, J.: Elastic 3D alignment of rat brain histological images. IEEE Transactions on Medical Imaging 22(11), 1480–1489 (2003)
Bardinet, E., Ourselin, S., Dormont, D., Malandain, G., Tandé, D., Parain, K., Ayache, N., Yelnik, J.: Co-registration of histological, optical and MR data of the human brain. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 548–555. Springer, Heidelberg (2002)
Kim, B., Boes, J., Frey, K., Meyer, C.: Mutual information for automated unwarping of rat brain autoradiographs. NeuroImage 5(1), 31–40 (1997)
Wirtz, S., Fischer, B., Modersitzki, J., Schmitt, O.: Super–fast elastic registration of histologic images of a whole rat brain for three–dimensional reconstruction. In: Proceedings of SPIE 2004, Medical Imaging, vol. 5730, pp. 14–19 (2004)
Yushkevich, P.A., Avants, B.B., Ng, L., Hawrylycz, M., Burstein, P.D., Zhang, H., Gee, J.C.: 3D mouse brain reconstruction from histology using a coarse-to-fine approach. In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds.) WBIR 2006. LNCS, vol. 4057, pp. 230–237. Springer, Heidelberg (2006)
Guest, E., Baldock, R.: Automatic reconstruction of serial sections using the finite element method. BioImaging 3, 154–167 (1995)
Tan, Y., Hua, J., Dong, M.: Feature curve-guided volume reconstruction from 2D images. In: Proceedings of International Symposium on Biomedical Imaging, April 2007, pp. 716–719 (2007)
Ju, T., Warren, J., Carson, J., Bello, M., Kakadiaris, I., Chiu, W., Thaller, C., Eichele, G.: 3D volume reconstruction of a mouse brain from histological sections using warp filtering. Journal of Neuroscience Methods 156, 84–100 (2006)
Laissue, P., Kenwright, C., Hojjat, A., Colchester, A.C.F.: Using curve-fitting of curvilinear features for assessing registration of clinical neuropathology with in vivo MRI. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 1050–1057. Springer, Heidelberg (2008)
Ourselin, S., Roche, A., Prima, S., Ayache, N.: Block matching: A general framework to improve robustness of rigid registration of medical images. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 557–566. Springer, Heidelberg (2000)
Malandain, G., Bardinet, E.: Intensity Compensation within Series of Images. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 41–49. Springer, Heidelberg (2003)
Dauguet, J., Mangin, J.F., Delzescaux, T., Frouin, V.: Robust inter-slice intensity normalization using histogram scale-space analysis. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 242–249. Springer, Heidelberg (2004)
Suri, J.S., Liu, K., Singh, S., Laxminarayan, S., Zeng, X., Reden, L.: Shape recovery algorithms using level sets in 2-d/3-d medical imagery: a state-of-the-art review. IEEE Transactions on Information Technology in Biomedicine 6(1), 8–28 (2002)
Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Heidelberg (2002)
Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)
Borgefors, G.: On digital distance transforms in three dimensions. Computer Vision and Image Understanding 64(3), 368–376 (1996)
Gomes, J., Faugeras, O.D.: Level sets and distance functions. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 588–602. Springer, Heidelberg (2000)
Pitiot, A., Guimond, A.: Geometrical regularization of displacement fields for histological image registration. Medical Image Analysis 12(1), 16–25 (2008)
Rousseeuw, P.J.: Least median of squares regression. Journal of the American Statistical Association 79(388), 871–880 (1984)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cifor, A., Pridmore, T., Pitiot, A. (2009). Smooth 3-D Reconstruction for 2-D Histological Images. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-02498-6_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02497-9
Online ISBN: 978-3-642-02498-6
eBook Packages: Computer ScienceComputer Science (R0)