Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5518))

Included in the following conference series:

  • 1951 Accesses

Abstract

The application of microarray data for cancer classification has recently gained in popularity. The main problem that needs to be addressed is the selection of a smaller subset of genes from the thousands of genes in the data that contributes to a disease. This selection process is difficult because of the availability of the small number of samples compared to the huge number of genes, many irrelevant genes, and noisy genes. Therefore, this paper proposes an improved binary particle swarm optimisation to select a near-optimal (smaller) subset of informative genes that is relevant for cancer classification. Experimental results show that the performance of the proposed method is superior to a standard version of particle swarm optimisation and other related previous works in terms of classification accuracy and the number of selected genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Knudsen, S.: A Biologist’s Guide to Analysis of DNA Microarray Data. John Wiley & Sons, New York (2002)

    Book  Google Scholar 

  2. Mohamad, M.S., Omatu, S., Deris, S., Misman, M.F., Yoshioka, M.: Selecting Informative Genes from Microarray Data by Using Hybrid Methods for Cancer Classification. J. Artif. Life Rob. 13(2), 414–417 (2009)

    Article  Google Scholar 

  3. Mohamad, M.S., Omatu, S., Deris, S., Hashim, S.Z.M.: A Model for Gene Selection and Classification of Gene Expression Data. J. Artif. Life Rob. 11(2), 219–222 (2007)

    Article  Google Scholar 

  4. Shen, Q., Shi, W.M., Kong, W.: Hybrid Particle Swarm Optimization and Tabu Search Approach for Selecting Genes for Tumor Classification Using Gene Expression Data. Comput. Biol. Chem. 32, 53–60 (2008)

    Article  MATH  Google Scholar 

  5. Chuang, L.Y., Chang, H.W., Tu, C.J., Yang, C.H.: Improved Binary PSO for Feature Selection Using Gene Expression Data. Comput. Biol. Chem. 32, 29–38 (2008)

    Article  MATH  Google Scholar 

  6. Li, S., Wu, X., Tan, M.: Gene Selection Using Hybrid Particle Swarm Optimization and Genetic Algorithm. Soft Comput. 12, 1039–1048 (2008)

    Article  Google Scholar 

  7. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Press, Los Alamitos (1995)

    Google Scholar 

  8. Kennedy, J., Eberhart, R.: A Discrete Binary Version of the Particle Swarm Algorithm. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, pp. 4104–4108. IEEE Press, Los Alamitos (1997)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mohamad, M.S., Omatu, S., Deris, S., Yoshioka, M., Zainal, A. (2009). An Improved Binary Particle Swarm Optimisation for Gene Selection in Classifying Cancer Classes. In: Omatu, S., et al. Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living. IWANN 2009. Lecture Notes in Computer Science, vol 5518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02481-8_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02481-8_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02480-1

  • Online ISBN: 978-3-642-02481-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics