Abstract
The use of Electro-encephalography (EEG) for Brain Computer Interface (BCI) provides a cost-efficient, safe, portable and easy to use BCI for both healthy users and the disabled. This paper will first briefly review some of the current challenges in BCI research and then discuss two of them in more detail, namely modeling the “no command” (rest) state and the use of control paradigms in BCI. For effective prosthetic control of a BCI system or when employing BCI as an additional control-channel for gaming or other generic man machine interfacing, a user should not be required to be continuously in an active state, as is current practice. In our approach, the signals are first transduced by computing Gaussian probability distributions of signal features for each mental state, then a prior distribution of idle-state is inferred and subsequently adapted during use of the BCI. We furthermore investigate the effectiveness of introducing an intermediary state between state probabilities and interface command, driven by a dynamic control law, and outline the strategies used by 2 subjects to achieve idle state BCI control.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Birbaumer, N., Hinterberger, T., Kübler, A., Neumann, N.: The thought-translation device (TTD): neurobehavioral mechanisms and clinical outcome. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 120–123 (2003)
Blankertz, B., Dornhege, G., Krauledat, M., Müller, K.-R., Curio, G.: The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects. Neuroimage 37(2), 539–550 (2007)
Blankertz, B., Krauledat, M., Dornhege, G., Williamson, J., Murray-Smith, R., Müller, K.-R.: A note on brain actuated spelling with the Berlin Brain-Computer Interface. In: Stephanidis, C. (ed.) UAHCI 2007 (Part II). LNCS, vol. 4555, pp. 759–768. Springer, Heidelberg (2007)
Blankertz, B., Losch, F., Krauledat, M., Dornhege, G., Curio, G., Müller, K.-R.: The berlin brain-computer interface: Accurate performance from first-session in bci-naive subjects. IEEE Transactions on Biomedical Engineering 55(10), 2452–2462 (2008)
Blankertz, B., Müller, K.-R., Krusienski, D.J., Schalk, G., Wolpaw, J.R., Schlögl, A., Pfurtscheller, G., del, J., Schlögl, A., Pfurtscheller, G., Millán, J.d.R., Schrder, M., Birbaumer, N.: The BCI competition. III: Validating alternative approaches to actual BCI problems. IEEE Trans. Neural Syst. Rehabil Eng. 14(2), 153–159 (2006)
Blankertz, B., Sannelli, C., Halder, S., Hammer, E.M., Kübler, A., Müller, K.-R., Curio, G., Dickhaus, T.: Neurophysiological predictor of SMR-based BCI performance. Plosbiol (submitted, 2009)
Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Müller, K.-R.: Optimizing spatial filters for robust eeg single-trial analysis. IEEE Signal Processing Magazine 25(1), 41–56 (2008)
Borisoff, J.F., Mason, S.G., Bashashati, A., Birch, G.E.: Brain-computer interface design for asynchronous control applications: improvements to the LF-ASD asynchronous brain switch. IEEE Trans. Biomed. Eng. 51(6), 985–992 (2004)
del Millán, J.R., Mourino, J.: Asynchronous BCI and local neural classifiers: an overview of the Adaptive Brain Interface project. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 159–161 (2003)
del Millán, J.R., Renkens, F., Mourino, J., Gerstner, W.: Non-Invasive Brain-Actuated Control of a Mobile Robot by Human EEG. In: 2006 IMIA Yearbook of Medical Informatics, Schattauer Verlag (2006)
Dornhege, G., del Millán, J.R., Hinterberger, T., McFarland, D., Müller, K.-R. (eds.): Towards Brain-Computer Interfacing. MIT Press, Cambridge (2007)
Fazli, S., Popescu, F., Danóczy, M., Blankertz, B., Müller, K.-R., Grozea, C.: Subject independent mental state classification in single trials. Neural Networks, Special Issue: Brain Machine Interface (in review)
Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan, A.H., Branner, A., Chen, D., Penn, R.D., Donoghue, J.P.: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006)
Koles, Z.J.: The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG. Electroencephalogr Clin Neurophysiol. 79, 440–447 (1991)
Krauledat, M., Losch, F., Curio, G.: Brain state differences between calibration and application session influence BCI classification accuracy. In: Proceedings of the 3rd International Brain-Computer Interface Workshop and Training Course 2006, pp. 60–61. Verlag der Technischen Universität Graz (2006)
Krauledat, M., Tangermann, M., Blankertz, B., Müller, K.-R.: Towards zero training for brain-computer interfacing. PLoS ONE 3, e2967 (2008)
Krepki, R., Blankertz, B., Curio, G., Müller, K.-R.: The berlin brain-computer interface (bbci) — towards a new communication channel for online control in gaming applications. Multimedia Tools Appl. 33(1), 73–90 (2007)
Kübler, A., Kotchoubey, B., Kaiser, J., Wolpaw, J.R., Birbaumer, N.: Brain-computer communication: unlocking the locked in. Psychol. Bull. 127, 358–375 (2001)
Lemm, S., Blankertz, B., Curio, G., Müller, K.-R.: Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans. Biomed. Eng. 52, 1541–1548 (2005)
Mason, S.G., Birch, G.E.: A brain-controlled switch for asynchronous control applications. IEEE Trans. Biomed. Eng. 47(10), 1297–1307 (2000)
Müller, K.-R., Anderson, C.W., Birch, G.E.: Linear and nonlinear methods for brain-computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11(2), 165–169 (2003)
Müller, K.-R., Mika, S., Ratsch, G., Tsuda, K., Schölkopf, B.: An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks 12(2), 181–201 (2001)
Müller, K.-R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., Blankertz, B.: Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring. J. Neurosci. Methods 167, 82–90 (2008)
Nicolelis, M.A.: Actions from thoughts. Nature 409, 403–407 (2001)
Nijholt, A., Tan, D., Pfurtscheller, G., Brunner, C., de Millán, J.R., Allison, B., Graimann, B., Popescu, F., Blankertz, B., Müller, K.-R.: Brain-computer interfacing for intelligent systems. IEEE Intelligent Systems 23(3), 72–79 (2008)
Pfurtscheller, G., Brunner, C., Schlögl, A., Lopes da Silva, F.H.: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31(1), 153–159 (2006)
Plotkin, W.B.: On the self-regulation of the occipital alpha rhythm: control strategies, states of consciousness, and the role of physiological feedback. J. Exp. Psychol. Gen. 105(1), 66–99 (1976)
Popescu, F., Fazli, S., Badower, Y., Blankertz, B., Müller, K.-R.: Single trial classification of motor imagination using 6 dry EEG electrodes. PLoS ONE 2(7), e637 (2007)
Santhanam, G., Ryu, S.I., Yu, B.M., Afshar, A., Shenoy, K.V.: A high-performance brain-computer interface. Nature 442, 195–198 (2006)
Schalk, G., Mcfarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: Bci2000: a general-purpose brain-computer interface (bci) system. IEEE Transactions on Biomedical Engineering 51(6), 1034–1043 (2004)
Shenoy, P., Krauledat, M., Blankertz, B., Rao, R.P., Müller, K.-R.: Towards adaptive classification for BCI. J. Neural Eng. 3, 13–23 (2006)
Sonnenburg, S., Braun, M.L., Ong, C.S., Bengio, S., Bottou, L., Holmes, G., LeCun, Y., Müller, K.-R., Pereira, F., Rasmussen, C.E., Rätsch, G., Schölkopf, B., Smola, A., Vincent, P., Weston, J., Williamson, R.: The need for open source software in machine learning. J. Mach. Learn. Res. 8, 2443–2466 (2007)
Sugiyama, M., Krauledat, M., Müller, K.-R.: Covariate shift adaption by importance weighted cross validation. Journal of Machine Learning Research 8, 985–1005 (2007)
Taylor, D.M., Tillery, S.I., Schwartz, A.B.: Direct cortical control of 3D neuroprosthetic devices. Science 296, 1829–1832 (2002)
Wang, Y., Zhang, Z., Li, Y., Gao, X., Gao, S., Yang, F.: BCI Competition 2003–Data set IV: an algorithm based on CSSD and FDA for classifying single-trial EEG. IEEE Trans. Biomed. Eng. 51(6), 1081–1086 (2004)
Williamson, S.J., Kaufman, L., Lu, Z.L., Wang, J.Z., Karron, D.: Study of human occipital alpha rhythm: the alphon hypothesis and alpha suppression. Int. J. Psychophysiol. 26(1-3), 63–76 (1997)
Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fazli, S., Danóczy, M., Popescu, F., Blankertz, B., Müller, KR. (2009). Using Rest Class and Control Paradigms for Brain Computer Interfacing. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02478-8_82
Download citation
DOI: https://doi.org/10.1007/978-3-642-02478-8_82
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02477-1
Online ISBN: 978-3-642-02478-8
eBook Packages: Computer ScienceComputer Science (R0)