Nothing Special   »   [go: up one dir, main page]

Skip to main content

Using Rest Class and Control Paradigms for Brain Computer Interfacing

  • Conference paper
Bio-Inspired Systems: Computational and Ambient Intelligence (IWANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5517))

Included in the following conference series:

Abstract

The use of Electro-encephalography (EEG) for Brain Computer Interface (BCI) provides a cost-efficient, safe, portable and easy to use BCI for both healthy users and the disabled. This paper will first briefly review some of the current challenges in BCI research and then discuss two of them in more detail, namely modeling the “no command” (rest) state and the use of control paradigms in BCI. For effective prosthetic control of a BCI system or when employing BCI as an additional control-channel for gaming or other generic man machine interfacing, a user should not be required to be continuously in an active state, as is current practice. In our approach, the signals are first transduced by computing Gaussian probability distributions of signal features for each mental state, then a prior distribution of idle-state is inferred and subsequently adapted during use of the BCI. We furthermore investigate the effectiveness of introducing an intermediary state between state probabilities and interface command, driven by a dynamic control law, and outline the strategies used by 2 subjects to achieve idle state BCI control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Birbaumer, N., Hinterberger, T., Kübler, A., Neumann, N.: The thought-translation device (TTD): neurobehavioral mechanisms and clinical outcome. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 120–123 (2003)

    Article  Google Scholar 

  2. Blankertz, B., Dornhege, G., Krauledat, M., Müller, K.-R., Curio, G.: The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects. Neuroimage 37(2), 539–550 (2007)

    Article  Google Scholar 

  3. Blankertz, B., Krauledat, M., Dornhege, G., Williamson, J., Murray-Smith, R., Müller, K.-R.: A note on brain actuated spelling with the Berlin Brain-Computer Interface. In: Stephanidis, C. (ed.) UAHCI 2007 (Part II). LNCS, vol. 4555, pp. 759–768. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Blankertz, B., Losch, F., Krauledat, M., Dornhege, G., Curio, G., Müller, K.-R.: The berlin brain-computer interface: Accurate performance from first-session in bci-naive subjects. IEEE Transactions on Biomedical Engineering 55(10), 2452–2462 (2008)

    Article  Google Scholar 

  5. Blankertz, B., Müller, K.-R., Krusienski, D.J., Schalk, G., Wolpaw, J.R., Schlögl, A., Pfurtscheller, G., del, J., Schlögl, A., Pfurtscheller, G., Millán, J.d.R., Schrder, M., Birbaumer, N.: The BCI competition. III: Validating alternative approaches to actual BCI problems. IEEE Trans. Neural Syst. Rehabil Eng. 14(2), 153–159 (2006)

    Article  Google Scholar 

  6. Blankertz, B., Sannelli, C., Halder, S., Hammer, E.M., Kübler, A., Müller, K.-R., Curio, G., Dickhaus, T.: Neurophysiological predictor of SMR-based BCI performance. Plosbiol (submitted, 2009)

    Google Scholar 

  7. Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Müller, K.-R.: Optimizing spatial filters for robust eeg single-trial analysis. IEEE Signal Processing Magazine 25(1), 41–56 (2008)

    Article  Google Scholar 

  8. Borisoff, J.F., Mason, S.G., Bashashati, A., Birch, G.E.: Brain-computer interface design for asynchronous control applications: improvements to the LF-ASD asynchronous brain switch. IEEE Trans. Biomed. Eng. 51(6), 985–992 (2004)

    Article  Google Scholar 

  9. del Millán, J.R., Mourino, J.: Asynchronous BCI and local neural classifiers: an overview of the Adaptive Brain Interface project. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 159–161 (2003)

    Article  Google Scholar 

  10. del Millán, J.R., Renkens, F., Mourino, J., Gerstner, W.: Non-Invasive Brain-Actuated Control of a Mobile Robot by Human EEG. In: 2006 IMIA Yearbook of Medical Informatics, Schattauer Verlag (2006)

    Google Scholar 

  11. Dornhege, G., del Millán, J.R., Hinterberger, T., McFarland, D., Müller, K.-R. (eds.): Towards Brain-Computer Interfacing. MIT Press, Cambridge (2007)

    Google Scholar 

  12. Fazli, S., Popescu, F., Danóczy, M., Blankertz, B., Müller, K.-R., Grozea, C.: Subject independent mental state classification in single trials. Neural Networks, Special Issue: Brain Machine Interface (in review)

    Google Scholar 

  13. Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan, A.H., Branner, A., Chen, D., Penn, R.D., Donoghue, J.P.: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006)

    Article  Google Scholar 

  14. Koles, Z.J.: The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG. Electroencephalogr Clin Neurophysiol. 79, 440–447 (1991)

    Article  Google Scholar 

  15. Krauledat, M., Losch, F., Curio, G.: Brain state differences between calibration and application session influence BCI classification accuracy. In: Proceedings of the 3rd International Brain-Computer Interface Workshop and Training Course 2006, pp. 60–61. Verlag der Technischen Universität Graz (2006)

    Google Scholar 

  16. Krauledat, M., Tangermann, M., Blankertz, B., Müller, K.-R.: Towards zero training for brain-computer interfacing. PLoS ONE 3, e2967 (2008)

    Article  Google Scholar 

  17. Krepki, R., Blankertz, B., Curio, G., Müller, K.-R.: The berlin brain-computer interface (bbci) — towards a new communication channel for online control in gaming applications. Multimedia Tools Appl. 33(1), 73–90 (2007)

    Article  Google Scholar 

  18. Kübler, A., Kotchoubey, B., Kaiser, J., Wolpaw, J.R., Birbaumer, N.: Brain-computer communication: unlocking the locked in. Psychol. Bull. 127, 358–375 (2001)

    Article  Google Scholar 

  19. Lemm, S., Blankertz, B., Curio, G., Müller, K.-R.: Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans. Biomed. Eng. 52, 1541–1548 (2005)

    Article  Google Scholar 

  20. Mason, S.G., Birch, G.E.: A brain-controlled switch for asynchronous control applications. IEEE Trans. Biomed. Eng. 47(10), 1297–1307 (2000)

    Article  Google Scholar 

  21. Müller, K.-R., Anderson, C.W., Birch, G.E.: Linear and nonlinear methods for brain-computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11(2), 165–169 (2003)

    Article  Google Scholar 

  22. Müller, K.-R., Mika, S., Ratsch, G., Tsuda, K., Schölkopf, B.: An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks 12(2), 181–201 (2001)

    Article  Google Scholar 

  23. Müller, K.-R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., Blankertz, B.: Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring. J. Neurosci. Methods 167, 82–90 (2008)

    Article  Google Scholar 

  24. Nicolelis, M.A.: Actions from thoughts. Nature 409, 403–407 (2001)

    Article  Google Scholar 

  25. Nijholt, A., Tan, D., Pfurtscheller, G., Brunner, C., de Millán, J.R., Allison, B., Graimann, B., Popescu, F., Blankertz, B., Müller, K.-R.: Brain-computer interfacing for intelligent systems. IEEE Intelligent Systems 23(3), 72–79 (2008)

    Article  Google Scholar 

  26. Pfurtscheller, G., Brunner, C., Schlögl, A., Lopes da Silva, F.H.: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31(1), 153–159 (2006)

    Article  Google Scholar 

  27. Plotkin, W.B.: On the self-regulation of the occipital alpha rhythm: control strategies, states of consciousness, and the role of physiological feedback. J. Exp. Psychol. Gen. 105(1), 66–99 (1976)

    Article  Google Scholar 

  28. Popescu, F., Fazli, S., Badower, Y., Blankertz, B., Müller, K.-R.: Single trial classification of motor imagination using 6 dry EEG electrodes. PLoS ONE 2(7), e637 (2007)

    Article  Google Scholar 

  29. Santhanam, G., Ryu, S.I., Yu, B.M., Afshar, A., Shenoy, K.V.: A high-performance brain-computer interface. Nature 442, 195–198 (2006)

    Article  Google Scholar 

  30. Schalk, G., Mcfarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: Bci2000: a general-purpose brain-computer interface (bci) system. IEEE Transactions on Biomedical Engineering 51(6), 1034–1043 (2004)

    Article  Google Scholar 

  31. Shenoy, P., Krauledat, M., Blankertz, B., Rao, R.P., Müller, K.-R.: Towards adaptive classification for BCI. J. Neural Eng. 3, 13–23 (2006)

    Article  Google Scholar 

  32. Sonnenburg, S., Braun, M.L., Ong, C.S., Bengio, S., Bottou, L., Holmes, G., LeCun, Y., Müller, K.-R., Pereira, F., Rasmussen, C.E., Rätsch, G., Schölkopf, B., Smola, A., Vincent, P., Weston, J., Williamson, R.: The need for open source software in machine learning. J. Mach. Learn. Res. 8, 2443–2466 (2007)

    Google Scholar 

  33. Sugiyama, M., Krauledat, M., Müller, K.-R.: Covariate shift adaption by importance weighted cross validation. Journal of Machine Learning Research 8, 985–1005 (2007)

    MATH  Google Scholar 

  34. Taylor, D.M., Tillery, S.I., Schwartz, A.B.: Direct cortical control of 3D neuroprosthetic devices. Science 296, 1829–1832 (2002)

    Article  Google Scholar 

  35. Wang, Y., Zhang, Z., Li, Y., Gao, X., Gao, S., Yang, F.: BCI Competition 2003–Data set IV: an algorithm based on CSSD and FDA for classifying single-trial EEG. IEEE Trans. Biomed. Eng. 51(6), 1081–1086 (2004)

    Article  Google Scholar 

  36. Williamson, S.J., Kaufman, L., Lu, Z.L., Wang, J.Z., Karron, D.: Study of human occipital alpha rhythm: the alphon hypothesis and alpha suppression. Int. J. Psychophysiol. 26(1-3), 63–76 (1997)

    Article  Google Scholar 

  37. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fazli, S., Danóczy, M., Popescu, F., Blankertz, B., Müller, KR. (2009). Using Rest Class and Control Paradigms for Brain Computer Interfacing. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02478-8_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02478-8_82

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02477-1

  • Online ISBN: 978-3-642-02478-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics