Nothing Special   »   [go: up one dir, main page]

Skip to main content

Parallelizing the Design of Radial Basis Function Neural Networks by Means of Evolutionary Meta-algorithms

  • Conference paper
Bio-Inspired Systems: Computational and Ambient Intelligence (IWANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5517))

Included in the following conference series:

Abstract

This work introduces SymbPar, a parallel meta-evolutionary algorithm designed to build Radial Basis Function Networks minimizing the number of parameters needed to be set by hand. Parallelization is implemented using independent agents to evaluate every individual. Experiments over classifications problems show that the new method drastically reduces the time took by sequential algorithms, while maintaining the generalization capabilities and sizes of the nets it builds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alba, E., Luque, G.: Evaluation of Parallel Metaheuristics. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 9–14. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Bethke, A.D.: Comparison of genetic algorithms and gradient-based optimizers on parallel processors: Efficiency of use of processing capacity. Tech. Rep., University of Michigan, Ann Arbor, Logic of Computers Group (1976)

    Google Scholar 

  3. Castillo, P.A., Merelo, J.J., Rivas, V., Romero, G., Prieto, A.: G-Prop: Global Optimization of Multilayer Perceptrons using GAs. Neurocomputing 35/1-4, 149–163 (2000)

    Article  MATH  Google Scholar 

  4. Castillo, P.A., Arenas, M.G., Merelo, J.J., Rivas, V., Romero, G.: Optimisation of Multilayer Perceptrons Using a Distributed Evolutionary Algorithm with SOAP. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 676–685. Springer, Heidelberg (2002)

    Google Scholar 

  5. Cortez, P., Rocha, M., Neves, J.: A meta-genetic algorithm for time series forecasting. In: Torgo, L. (ed.) Proceedings of Workshop on Artificial Intelligence Techniques for Financial Time Series Analysis (AIFTSA 2001), 10th Portuguese Conference on Artificial Intelligence (EPIA 2001), Oporto, Portugal, pp. 21–31 (2001)

    Google Scholar 

  6. Grefenstette, J.: Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man Cybern 16(1), 122–128 (1986)

    Article  Google Scholar 

  7. Hernandez, A.I., Carrault, G., Mora, F., Bardou, A.: Model-based interpretation of cardiac beats by evolutionary algorithms: signal and model interaction. Artificial Intelligence in Medicine 26(3), 211–235 (2002)

    Article  Google Scholar 

  8. Jelasity, M., Preub, M., Paechter, B.: A scalable and robust framework for distributed application. In Proc. on Evolutionary Computation, pp. 1540–1545 (2002).

    Google Scholar 

  9. Karp, A.H., Flatt, H.P.: Measuring parallel processor performance. Communications of the ACM 33(5), 539–543 (1990)

    Article  Google Scholar 

  10. Laoutaris, N., Syntila, S., Stavrakakis, I.: Meta algorithms for Hierarchical Web Caches. In: IEEE International Conference on Performance, Computing, and Communications, pp. 445–452 (2004) ISBN: 0-7803-8396-6

    Google Scholar 

  11. Mercer, R.E., Sampson, J.R.: Adaptive search using a reproductive meta-plan. Kybernetes 7(3), 215–228 (1978)

    Article  Google Scholar 

  12. Parras-Gutiérrez, E., Rivas, V.M., Merelo Juan, J., del Jesus, M.J.: Study of the robustness of a meta-algorithm for the estimation of parameters in Artificial Neural Networks design. In: HIS 2008: 8th International Conference on Hybrid Intelligent Systems, Barcelona, pp. 519–524. IEEE computer society, Los Alamitos (2008)

    Chapter  Google Scholar 

  13. Rex, D.E., Shattuck, D.W., Woods, R.P., Narr, K.L., Luders, E., Rehm, K., Stolzner, S.E., Rottenberg, D.A., Toga, A.W.: A meta-algorithm for brain extraction in MRI. NeuroImage 23(2), 625–637 (2004)

    Article  Google Scholar 

  14. Rivas, V.M., Merelo, J.J., Castillo, P.A., Arenas, M.G., Castellanos, J.G.: Evolving RBF neural networks for time-series forecasting with EvRBF. Information Sciences 165(3-4), 207–220 (2004)

    Article  MathSciNet  Google Scholar 

  15. Samsonovich, A.V., De Jong, K.A.: Pricing the ’free lunch’ of meta-evolution. In: Beyer, H.-G., O’Reilly, U.-M. (eds.) GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, pp. 1355–1362. ACM Press, New York (2005)

    Google Scholar 

  16. Shahookar, K., Mazumder, P.: VLSI cell placement techniques. ACM Comput. Surv. 23(2), 143–220 (1991)

    Article  Google Scholar 

  17. Tomassini, M.: Parallel and distributed evolutionary algorithms: A review. In: Miettinen, K., et al. (eds.) Evolutionary Algorithms in Engineering and Computer Science, pp. 113–133. J. Wiley and Sons, Chichester (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arenas, M.G., Parras-Gutiérrez, E., Rivas, V.M., Castillo, P.A., Del Jesus, M.J., Merelo, J.J. (2009). Parallelizing the Design of Radial Basis Function Neural Networks by Means of Evolutionary Meta-algorithms. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02478-8_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02478-8_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02477-1

  • Online ISBN: 978-3-642-02478-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics