Nothing Special   »   [go: up one dir, main page]

Skip to main content

Synchronization in Complex Networks with Different Sort of Communities

  • Conference paper
Complex Sciences (Complex 2009)

Abstract

In this paper, inspired by the idea that many real networks are composed by sorts of communities, we investigate the synchronization property of oscillators on such community networks. We identify the communities by two ways, one is by the structure of individual community and the other by the intrinsic frequencies probability density g(ω) of Kuramoto oscillators on different communities. For the two sorts of community networks, when the community structure is strong, only the oscillators on the same community synchronize. With the weakening of the community strength, an interesting phenomenon appears: although the global synchronization is not achieved, oscillators on the same sort of communities will synchronize independently. Global synchronization will appear with the further weakening of community structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Girvan, M., Newnam, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A. 99, 8271 (2002)

    Article  MathSciNet  Google Scholar 

  3. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community struc e ture of complex networks in nature and society. Nature 435, 814 (2005)

    Article  Google Scholar 

  4. Strogatz, S.H.: SYNC-How the emerges from chaos in the universe, nature, and daily life. Hyperion, New York (2003)

    Google Scholar 

  5. Nishikawa, T., Motter, A.E., Lai, Y.-C., Hoppensteadt, F.C.: Heterogeneity in Oscillator Networks: Are Smaller Worlds Easier to Synchronize? Phys. Rev. Lett. 91, 14101 (2003)

    Article  Google Scholar 

  6. Hong, H., Kim, B.J., Choi, M.Y., Park, H.: Factors that predict better synchronizability on complex networks. Phys, Rev. E 69, 067105 (2004)

    Article  Google Scholar 

  7. Donetti, L., Hurtado, P.I., Muñoz, M.A.: Entangled Networks, Synchronization, and Optimal Network Topology. Phys. Rev. Lett. 95, 188701 (2005)

    Article  Google Scholar 

  8. Zhao, M., Zhou, T., Wang, B.-H., Yan, G., Yang, H.-J., Bai, W.-J.: Relations between average distance, heterogeneity and network synchronizability. Physica A 371, 773–780 (2006)

    Article  Google Scholar 

  9. Oh, E., Rho, K., Hong, H., Kahng, B.: Modular synchronization in complex networks. Phys. Rev. E 72, 047101 (2005)

    Article  Google Scholar 

  10. Zhou, T., Zhao, M., Chen, G., Yan, G., Wang, B.-H.: Phase synchronization on scale-free networks with community structure. Phys. Lett. A 368, 431 (2007)

    Article  Google Scholar 

  11. Park, K., Lai, Y.-C., Gupte, S., Kim, J.-W.: Synchronization in complex networks with a modular structure. Chaos 16, 015105 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kuramoto, Y.: Araki, H. (ed.) Proceedings of the International Symposium on Mathematical Problems in Theoretical Physics. Springer, New York (1975)

    Google Scholar 

  13. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  14. Kuramoto, Y., Nishikawa, I.: Statistical Macrodynamics of Large Dynamical Systems. Case of a Phase Transition in Oscillator Communities. J. Stat. Phys. 49, 569 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Daido, H.: Population Dynamics of Randomly Interacting Self-Oscillators. I. Prog. Theor. Phys. 77, 622 (1987)

    Article  MathSciNet  Google Scholar 

  16. Daido, H.: Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions. Phys. Rev. Lett. 68, 1073 (1992)

    Article  Google Scholar 

  17. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440 (1998)

    Article  Google Scholar 

  18. Lago-Fernández, L.F., Huerta, R., Corbacho, F., Sigüenza, J.A.: Fast Response and Temporal Coherent Oscillations in Small-world Networks. Phys. Rev. Lett. 84, 2758 (2000)

    Article  Google Scholar 

  19. Wang, X.F., Chen, G.: Synchronization in small-world dynamical networks. Int. J. Bifurcation Chaos Appl. Sci. Eng. 12, 187 (2002)

    Article  Google Scholar 

  20. Barahona, M., Pecora, L.M.: Synchronization in Small-World Systems. Phys. Rev. Lett. 89, 054101 (2002)

    Article  Google Scholar 

  21. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Krapivsky, P.L., Render, S., Leyvraz, F.: Connectivity of Growing Random Networks. Phys. Rev. Lett. 85, 4629 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Zhao, M., Zhou, T., Yang, HJ., Yan, G., Wang, BH. (2009). Synchronization in Complex Networks with Different Sort of Communities. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02466-5_92

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02466-5_92

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02465-8

  • Online ISBN: 978-3-642-02466-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics