Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Topological Characteristics and Community Structure in Consumer-Service Bipartite Graph

  • Conference paper
Complex Sciences (Complex 2009)

Abstract

We apply network analysis to study bipartite consumer- service graph that represents service transaction to understand consumer demand. Based on real-world computer log files of a library, we found that consumer graph projected from bipartite graph deviates significantly from theoretical predictions based on random bipartite graph. We observed smaller-than-expected average degree, larger-than-expected average path length and stronger-than-expected tendency to cluster. These findings motivated to explore the community structure of the network. As a result, the weighted consumer network showed significant community structure than the unweighted network. Communities picked out by the algorithm revealed that individuals in the same community were due to their common specialties or the overlapping structure of knowledge between their specialties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amaral, L.A.N., Uzzi, B.: Complex Systems-A New Paradigm for the Integrative Study of Management, Physical, and Technological Systems. Management Science 53, 1033–1035 (2007)

    Article  Google Scholar 

  2. Epstein, J.M., Axtell, R.: Growing Artificial Societies: Social Science from the Bottom Up. The MIT Press, Cambridge (1996)

    Google Scholar 

  3. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)

    MATH  Google Scholar 

  4. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Huang, Z., Zeng, D.D., Chen, H.: Analyzing Consumer-Product Graphs: Empirical Findings and Applications in Recommender Systems. Management Science 53, 1146–1164 (2007)

    Article  MATH  Google Scholar 

  6. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 26118 (2001)

    Article  Google Scholar 

  7. Nooy, W., de Mrvar, A., Batagelj, V.: Exploratory Social Network Analysis with Pajek. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  8. Zhou, T., Ren, J., Medo, M., Zhang, Y.C.: Bipartite network projection and personal recommendation. Phys. Rev. E 76, 046115 (2007)

    Article  Google Scholar 

  9. Zhang, P.P., Chen, K., He, Y., Zhou, T., Su, B.B., Jin, Y.D., Chang, H., Zhou, Y.P., Sun, L.C., Wang, B.H., He, D.R.: Model and empirical study on some collaboration networks. Phys. A 360(2), 599–616 (2006)

    Article  Google Scholar 

  10. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Girvan, M., Newman, M.E.J.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Article  Google Scholar 

  12. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004)

    Article  Google Scholar 

  13. Newman, M.E.J.: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016132 (2001)

    Article  Google Scholar 

  14. Newman, M.E.J.: Scientific collaboration networks. I. Network construction and fundamental results. Phys. Rev. E 64, 016131 (2001)

    Article  Google Scholar 

  15. Gleiser, P., Danon, L.: Community structure in jazz. Preprint cond-mat/0307434 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Li, L., Gu, BY., Chen, L. (2009). The Topological Characteristics and Community Structure in Consumer-Service Bipartite Graph. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02466-5_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02466-5_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02465-8

  • Online ISBN: 978-3-642-02466-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics