Abstract
In this paper, we propose a new graph-based classifier which uses a special network, referred to as optimal K-associated network, for modeling data. The K-associated network is capable of representing (dis)similarity relationships among data samples and data classes. Here, we describe the main properties of the K-associated network as well as the classification algorithm based on it. Experimental evaluation indicates that the model based on an optimal K-associated network captures topological structure of the training data leading to good results on the classification task particularly for noisy data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Watts, D.J., Strogatz, S.H.: Collective Dynamics of ’Small-World’ Networks. Nature 393, 440–442 (1998)
Albert, R., Jeong, H., Barabási, A.-L.: Diameter of the World Wide Web. Nature 401, 130–131 (1999)
Newman, M.E.J.: The Structure and Function of Complex Networks. SIAM Review 45(2), 167–256 (2003)
Albert, R., Barabási, A.-L.: Statistical Mechanics of Complex Networks. Review of Modern Physics 74, 47–97 (2002)
Bornholdt, S., Schuster, H.G.: Handbook of Graphs and Networks: From the Genome to the Internet. Wiley-vch, Weinheim (2003)
Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2006)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & Sons, Inc., Chichester (2001)
Berkhin, P.: Survey of Clustering Data Mining Techniques. Technical report, Accrue Software (2002)
Schaeffer, S.E.: Graph Clustering. Computer Science Review 1, 27–34 (2007)
Karypis, G., Han, E.-H., Kumar, V.: Chameleon: Hierarchical Clustering using Dynamic Modeling. IEEE Computer 32(8), 68–75 (1999)
Guha, S., Rastogi, R., Shim, K.: CURE: An Efficient Clustering Algorithm for Large Databases. In: Proc. of 1998 ACM-SIGMOD Int. Conf. on Management of Data, pp. 73–84 (1998)
Newman, M.E.J., Girvan, M.: Finding and Evaluating Community Structure in Networks. Physical Review E 69, 026113(1-15) (2004)
Danon, L., Duch, J., Arenas, A., Dáz-Guilera, A.: Comparing Community Structure Identification. Journal of Statistical Mechanics: Theory and Experiment, P09008(1-10) (2005)
Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking Evolving Communities in Large Networks. Publications of the National Academy of Sciences USA 101(1), 5249–5253 (2004)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, Heidelberg (2001)
Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Lopes, A.A., Bertini, J.R., Motta, R., Zhao, L. (2009). Classification Based on the Optimal K-Associated Network. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02466-5_117
Download citation
DOI: https://doi.org/10.1007/978-3-642-02466-5_117
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02465-8
Online ISBN: 978-3-642-02466-5
eBook Packages: Computer ScienceComputer Science (R0)