Nothing Special   »   [go: up one dir, main page]

Skip to main content

Classification Based on the Optimal K-Associated Network

  • Conference paper
Complex Sciences (Complex 2009)

Abstract

In this paper, we propose a new graph-based classifier which uses a special network, referred to as optimal K-associated network, for modeling data. The K-associated network is capable of representing (dis)similarity relationships among data samples and data classes. Here, we describe the main properties of the K-associated network as well as the classification algorithm based on it. Experimental evaluation indicates that the model based on an optimal K-associated network captures topological structure of the training data leading to good results on the classification task particularly for noisy data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Watts, D.J., Strogatz, S.H.: Collective Dynamics of ’Small-World’ Networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  2. Albert, R., Jeong, H., Barabási, A.-L.: Diameter of the World Wide Web. Nature 401, 130–131 (1999)

    Article  Google Scholar 

  3. Newman, M.E.J.: The Structure and Function of Complex Networks. SIAM Review 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Albert, R., Barabási, A.-L.: Statistical Mechanics of Complex Networks. Review of Modern Physics 74, 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bornholdt, S., Schuster, H.G.: Handbook of Graphs and Networks: From the Genome to the Internet. Wiley-vch, Weinheim (2003)

    MATH  Google Scholar 

  6. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  7. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2006)

    MATH  Google Scholar 

  8. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & Sons, Inc., Chichester (2001)

    MATH  Google Scholar 

  9. Berkhin, P.: Survey of Clustering Data Mining Techniques. Technical report, Accrue Software (2002)

    Google Scholar 

  10. Schaeffer, S.E.: Graph Clustering. Computer Science Review 1, 27–34 (2007)

    Article  MATH  Google Scholar 

  11. Karypis, G., Han, E.-H., Kumar, V.: Chameleon: Hierarchical Clustering using Dynamic Modeling. IEEE Computer 32(8), 68–75 (1999)

    Article  Google Scholar 

  12. Guha, S., Rastogi, R., Shim, K.: CURE: An Efficient Clustering Algorithm for Large Databases. In: Proc. of 1998 ACM-SIGMOD Int. Conf. on Management of Data, pp. 73–84 (1998)

    Google Scholar 

  13. Newman, M.E.J., Girvan, M.: Finding and Evaluating Community Structure in Networks. Physical Review E 69, 026113(1-15) (2004)

    Google Scholar 

  14. Danon, L., Duch, J., Arenas, A., Dáz-Guilera, A.: Comparing Community Structure Identification. Journal of Statistical Mechanics: Theory and Experiment, P09008(1-10) (2005)

    Google Scholar 

  15. Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking Evolving Communities in Large Networks. Publications of the National Academy of Sciences USA 101(1), 5249–5253 (2004)

    Article  Google Scholar 

  16. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  17. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Lopes, A.A., Bertini, J.R., Motta, R., Zhao, L. (2009). Classification Based on the Optimal K-Associated Network. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02466-5_117

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02466-5_117

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02465-8

  • Online ISBN: 978-3-642-02466-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics