Nothing Special   »   [go: up one dir, main page]

Skip to main content

Loops under Strategies

  • Conference paper
Rewriting Techniques and Applications (RTA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5595))

Included in the following conference series:

Abstract

Most techniques to automatically disprove termination of term rewrite systems search for a loop. Whereas a loop implies non-termination for full rewriting, this is not necessarily the case if one considers rewriting under strategies. Therefore, in this paper we first generalize the notion of a loop to a loop under a given strategy. In a second step we present two novel decision procedures to check whether a given loop is a context-sensitive or an outermost loop. We implemented and successfully evaluated our method in the termination prover \({\textsf{T\kern-0.2em\raisebox{-0.3em}T\kern-0.2emT\kern-0.2em\raisebox{-0.3em}2}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  2. Endrullis, J.: Jambox, http://joerg.endrullis.de

  3. Giesl, J., Middeldorp, A.: Transformation techniques for context-sensitive rewrite systems. Journal of Functional Programming 14(4), 379–427 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination of higher-order functions. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 216–231. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination proofs in the DP framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS, vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Giesl, J., Swiderski, S., Schneider-Kamp, P., Thiemann, R.: Automated termination analysis for Haskell: From term rewriting to programming languages. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 297–312. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Guttag, J., Kapur, D., Musser, D.: On proving uniform termination and restricted termination of rewriting systems. SIAM J. Computation 12, 189–214 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean Termination Tool 2. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. springer, Heidelberg (2009)

    Google Scholar 

  9. Kurth, W.: Termination und Konfluenz von Semi-Thue-Systemen mit nur einer Regel. PhD thesis, Technische Universität Clausthal, Germany (1990)

    Google Scholar 

  10. Lankford, D., Musser, D.: A finite termination criterion. Unpublished Draft. USC Information Sciences Institute (1978)

    Google Scholar 

  11. Lucas, S.: Context-sensitive computations in functional and functional logic programs. Journal of Functional and Logic Programming 1, 1–61 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Payet, É.: Loop detection in term rewriting using the eliminating unfoldings. Theoretical Computer Science 403(2-3), 307–327 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Raffelsieper, M., Zantema, H.: A transformational approach to prove outermost termination automatically. In: Proc. WRS 2008. ENTCS 237, pp. 3–21 (2009)

    Google Scholar 

  14. Thiemann, R.: From outermost termination to innermost termination. In: Nielsen, M., et al. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 533–545. Springer, Heidelberg (2009)

    Google Scholar 

  15. Thiemann, R., Giesl, J., Schneider-Kamp, P.: Deciding innermost loops. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 366–380. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Waldmann, J.: Matchbox: A tool for match-bounded string rewriting. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 85–94. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Zantema, H.: Termination of string rewriting proved automatically. Journal of Automated Reasoning 34, 105–139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thiemann, R., Sternagel, C. (2009). Loops under Strategies. In: Treinen, R. (eds) Rewriting Techniques and Applications. RTA 2009. Lecture Notes in Computer Science, vol 5595. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02348-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02348-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02347-7

  • Online ISBN: 978-3-642-02348-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics