Nothing Special   »   [go: up one dir, main page]

Skip to main content

Detection of Dogs in Video Using Statistical Classifiers

  • Conference paper
Computer Vision and Graphics (ICCVG 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5337))

Included in the following conference series:

Abstract

A common approach to pattern recognition and object detection is to use a statistical classifier. Widely used method is AdaBoost or its modifications which yields outstanding results in certain tasks like face detection. The aim of this work was to build real-time system for detection of dogs for surveillance purposes. The author of this paper thus explored the possibility that the AdaBoost based classifiers could be used for this task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features, pp. 511–518 (2001)

    Google Scholar 

  2. Šochman, J., Matas, J.: Learning a fast emulator of a binary decision process. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part II. LNCS, vol. 4844, pp. 236–245. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Sochman, J., Matas, J.: Waldboost learning for time constrained sequential detection. In: CVPR 2005: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), Washington, DC, USA, 2005, vol. 2, pp. 150–156. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  4. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  5. Schapire, R.E., Singer, Y.: Machine learning. Improved boosting algorithms using confidence-rated predictions 37(3), 297–336 (1999)

    Google Scholar 

  6. Li, S., Zhang, Z., Shum, H., Zhang, H.: Floatboost learning for classification (2002)

    Google Scholar 

  7. Sochman, J., Matas, J.: Adaboost with totally corrective updates for fast face detection. In: FGR, pp. 445–450 (2004)

    Google Scholar 

  8. Wald, A.: Sequential Analysis. John Wiley and Sons, Inc., Chichester (1947)

    MATH  Google Scholar 

  9. Lee, T.S.: Image representation using 2d gabor wavelets. IEEE Trans. Pattern Anal. Mach. Intell. 18(10), 959–971 (1996)

    Article  Google Scholar 

  10. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  11. Zemčk, P., Hradiš, M., Herout, A.: Local rank differences - novel features for image. In: Proceedings of SCCG 2007, pp. 1–12 (2007).

    Google Scholar 

  12. Hradiš, M.: Framework for research on detection classifiers. In: Proceedings of Spring Conference on Computer Graphics, pp. 171–177 (2008)

    Google Scholar 

  13. Jones, M., Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and appearance. In: ICCV, pp. 734–741 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Juránek, R. (2009). Detection of Dogs in Video Using Statistical Classifiers. In: Bolc, L., Kulikowski, J.L., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2008. Lecture Notes in Computer Science, vol 5337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02345-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02345-3_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02344-6

  • Online ISBN: 978-3-642-02345-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics