Nothing Special   »   [go: up one dir, main page]

Skip to main content

On User Modelling for Personalised News Video Recommendation

  • Conference paper
User Modeling, Adaptation, and Personalization (UMAP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5535))

Abstract

In this paper, we introduce a novel approach for modelling user interests. Our approach captures users’ evolving information needs, identifies aspects of their need and recommends relevant news items to the users. We introduce our approach within the context of personalised news video retrieval. A news video data set is used for experimentation. We employ a simulated user evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bagga, A., Baldwin, B.: Entity-based cross-document coreferencing using the vector space model. In: Proc. Computational Linguistics, pp. 79–85. ACL, Morristown (1998)

    Google Scholar 

  2. Chen, L., Sycara, K.: WebMate: A personal agent for browsing and searching. In: Sycara, K.P., Wooldridge, M. (eds.) Proc. Autonomous Agents, pp. 132–139. ACM, New York (1998)

    Google Scholar 

  3. Hopfgartner, F., Jose, J.M.: Toward an Adaptive Video Retrieval System. In: Advances in Semantic Media Adaptation and Personalization, vol. 2, pp. 113–135. CRC Press, Boca Raton (2009)

    Chapter  Google Scholar 

  4. Hopfgartner, F., Vallet, D., Halvey, M., Jose, J.M.: Search trails using user feedback to improve video search. In: MM 2008 - Proceedings of the ACM International Conference on Multimedia, Vancouver, Canada, October 2008, pp. 339–348 (2008)

    Google Scholar 

  5. Lee, H., Smeaton, A.F., O’Connor, N.E., Smyth, B.: User evaluation of Físchlár-News: An automatic broadcast news delivery system. ACM Trans. Inf. Syst. 24(2), 145–189 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hopfgartner, F., Jose, J.M. (2009). On User Modelling for Personalised News Video Recommendation. In: Houben, GJ., McCalla, G., Pianesi, F., Zancanaro, M. (eds) User Modeling, Adaptation, and Personalization. UMAP 2009. Lecture Notes in Computer Science, vol 5535. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02247-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02247-0_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02246-3

  • Online ISBN: 978-3-642-02247-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics